Coverage for agentlib_flexquant/utils/data_handling.py: 75%
44 statements
« prev ^ index » next coverage.py v7.4.4, created at 2025-08-15 15:25 +0000
« prev ^ index » next coverage.py v7.4.4, created at 2025-08-15 15:25 +0000
1import pandas as pd
2from typing import Literal
3from agentlib_mpc.utils import TimeConversionTypes, TIME_CONVERSION
6MEAN: str = "mean"
7INTERPOLATE: str = "interpolate"
8FillNansMethods = Literal[MEAN, INTERPOLATE]
11def fill_nans(series: pd.Series, method: FillNansMethods) -> pd.Series:
12 """Fill NaN values in the series with the given method.
14 Args:
15 series: the series to be filled
16 method: the method to be applied, there are two predefined
17 - mean: fill NaN values with the mean of the following values.
18 - interpolate: interpolate missing values.
20 Returns:
21 A pd.Series with nan filled.
23 """
24 if method == MEAN:
25 series = _set_mean_values(series=series)
26 elif method == INTERPOLATE:
27 # Interpolate missing values
28 series = series.interpolate(method="index", limit_direction="both")
30 if series.isna().any():
31 raise ValueError(f"NaN values are still present in the series after filling them with the method {method}\n{series}")
32 return series
35def _set_mean_values(series: pd.Series) -> pd.Series:
36 """Fill intervals including the nan with the mean of the following values before the next nan."""
37 def _get_intervals_for_mean(s: pd.Series) -> list[pd.Interval]:
38 intervals = []
39 start = None
40 for index, value in s.items():
41 if pd.isna(value):
42 if pd.isna(start):
43 start = index
44 else:
45 end = index
46 intervals.append(pd.Interval(left=start, right=end, closed="left"))
47 start = end
48 return intervals
50 for interval in _get_intervals_for_mean(series):
51 interval_index = (interval.left <= series.index) & (series.index < interval.right)
52 series[interval.left] = series[interval_index].mean(skipna=True)
54 # remove last entry if nan, e.g. with collocation
55 if pd.isna(series.iloc[-1]):
56 series = series.iloc[:-1]
58 return series
61def strip_multi_index(series: pd.Series) -> pd.Series:
62 # Convert the index (communicated as string) into a MultiIndex
63 if isinstance(series.index[0], str):
64 series.index = series.index.map(lambda x: eval(x))
65 series.index = pd.MultiIndex.from_tuples(series.index)
66 # vals is multicolumn so get rid of first value (start time of predictions)
67 series.index = series.index.get_level_values(1).astype(float)
68 return series
71def convert_timescale_of_index(df: pd.DataFrame, from_unit: TimeConversionTypes, to_unit: TIME_CONVERSION) -> pd.DataFrame:
72 """Convert the timescale of a dataframe index (from seconds) to the given time unit.
74 Args:
75 from_unit: the time unit of the original index
76 to_unit: the time unit to convert the index to
78 Returns:
79 A DataFrame with the converted index
81 """
82 time_conversion_factor = TIME_CONVERSION[from_unit] / TIME_CONVERSION[to_unit]
83 if isinstance(df.index, pd.MultiIndex):
84 df.index = pd.MultiIndex.from_arrays(
85 [df.index.get_level_values(level) * time_conversion_factor for level in range(df.index.nlevels)]
86 )
87 else:
88 df.index = df.index * time_conversion_factor
89 return df