Coverage for agentlib_flexquant/data_structures/globals.py: 96%
24 statements
« prev ^ index » next coverage.py v7.4.4, created at 2025-08-15 15:25 +0000
« prev ^ index » next coverage.py v7.4.4, created at 2025-08-15 15:25 +0000
1"""Script containing global variables"""
3from typing import Literal
5# fixed string definitions
6PREP_TIME = "prep_time"
7MARKET_TIME = "market_time"
8FLEX_EVENT_DURATION = "flex_event_duration"
9PROFILE_DEVIATION_WEIGHT = "profile_deviation_weight"
10PROFILE_COMFORT_WEIGHT = "profile_comfort_weight"
11TIME_STEP = "time_step"
12PREDICTION_HORIZON = "prediction_horizon"
13FlexibilityOffer = "FlexibilityOffer"
14FlexibilityDirections = Literal["positive", "negative"]
15POWER_ALIAS_BASE = "_P_el_base"
16POWER_ALIAS_NEG = "_P_el_neg"
17POWER_ALIAS_POS = "_P_el_pos"
18STORED_ENERGY_ALIAS_BASE = "_E_stored_base"
19STORED_ENERGY_ALIAS_NEG = "_E_stored_neg"
20STORED_ENERGY_ALIAS_POS = "_E_stored_pos"
21full_trajectory_suffix: str = "_full"
22full_trajectory_prefix: str = "_"
24# cost function in the shadow mpc. obj_std and obj_flex are to be evaluated according to user definition
25SHADOW_MPC_COST_FUNCTION = ("return ca.if_else(self.time < self.prep_time.sym + "
26 "self.market_time.sym, obj_std, ca.if_else(self.time < "
27 "(self.prep_time.sym + self.flex_event_duration.sym + "
28 "self.market_time.sym), obj_flex, obj_std))")
31def return_baseline_cost_function(power_variable: str, comfort_variable: str) -> str:
32 """Return baseline cost function
34 Args:
35 power_variable: name of the power variable
36 comfort_variable: name of the comfort variable
38 Returns:
39 Cost function in the baseline mpc, obj_std is to be evaluated according to user definition
41 """
42 if comfort_variable:
43 cost_func = ("return ca.if_else(self.in_provision.sym, "
44 "ca.if_else(self.time < self.rel_start.sym, obj_std, "
45 "ca.if_else(self.time >= self.rel_end.sym, obj_std, "
46 f"sum([self.profile_deviation_weight*(self.{power_variable} - self._P_external)**2, "
47 f"self.{comfort_variable}**2 * self.profile_comfort_weight]))),obj_std)")
48 else:
49 cost_func = ("return ca.if_else(self.in_provision.sym, "
50 "ca.if_else(self.time < self.rel_start.sym, obj_std, "
51 "ca.if_else(self.time >= self.rel_end.sym, obj_std, "
52 f"sum([self.profile_deviation_weight*(self.{power_variable} - self._P_external)**2]))),obj_std)")
53 return cost_func