Coverage for tests/test_OneRoom_CIA.py: 94%
54 statements
« prev ^ index » next coverage.py v7.4.4, created at 2025-10-20 14:09 +0000
« prev ^ index » next coverage.py v7.4.4, created at 2025-10-20 14:09 +0000
1import pytest
2import pandas as pd
3import os
4import sys
5from pathlib import Path
6import importlib.util
7import json
8from util import module_cleanup, round_floats_in_structure
10# Add the project root to the Python path to allow for absolute imports
11# This helps in locating the agentlib_flexquant package if needed
12root_path = Path(__file__).parent.parent
13sys.path.insert(0, str(root_path))
16def create_dataframe_summary(df: pd.DataFrame, precision: int = 6) -> dict:
17 """Create a robust, compact summary of a DataFrame for snapshotting.
19 This summary is designed to be insensitive to minor floating-point differences
20 while being highly sensitive to meaningful data changes.
22 Args:
23 df: The pandas DataFrame to summarize.
24 precision: The number of decimal places to round float values to.
26 Returns:
27 A dictionary containing the summary.
29 """
30 if df is None or df.empty:
31 return {"error": "DataFrame is empty or None"}
33 # Get descriptive statistics and round them to handle float precision issues
34 summary_stats = df.describe().round(precision)
36 # Convert the stats DataFrame to a dictionary. This may have tuple keys.
37 stats_dict_raw = summary_stats.to_dict()
39 # Create a new dictionary, converting any tuple keys into strings.
40 # e.g., ('lower', 'P_el') becomes 'lower.P_el'
41 stats_dict_clean = {
42 ".".join(map(str, k)) if isinstance(k, tuple) else str(k): v
43 for k, v in stats_dict_raw.items()
44 }
46 # Create the final summary object
47 summary = {
48 "shape": df.shape,
49 "columns": df.columns.tolist(),
50 "index_start": str(df.index.min()),
51 "index_end": str(df.index.max()),
52 "statistics": stats_dict_clean,
53 "head_5_rows": df.head(5).round(precision).to_dict(orient='split'),
54 "tail_5_rows": df.tail(5).round(precision).to_dict(orient='split'),
55 }
56 return summary
59def assert_frame_matches_summary_snapshot(snapshot, df: pd.DataFrame,
60 snapshot_name: str):
61 """Assert that a DataFrame's summary matches a stored snapshot.
63 This function creates a summary of the dataframe and uses pytest-snapshot
64 to compare it against a stored version.
66 """
67 # Create a summary of the dataframe
68 summary = create_dataframe_summary(df)
70 # Round all numbers in the summary to handle cross-platform differences
71 rounded_summary = round_floats_in_structure(summary, precision=1)
73 # Convert the summary dictionary to a formatted JSON string
74 summary_json = json.dumps(rounded_summary, indent=2, sort_keys=True)
76 # Use snapshot.assert_match on the small, stable JSON string
77 snapshot.assert_match(summary_json, snapshot_name)
79def run_example_from_path(example_path: Path):
80 """Dynamically import and run the 'run_example' function from a script
81 in the specified directory.
83 This function robustly handles changing the working directory AND the
84 Python import path, ensuring the script can find both its local files
85 and its local modules.
87 """
88 run_script_path = example_path / 'main_cia_flex.py'
89 if not run_script_path.is_file():
90 raise FileNotFoundError(
91 f"Could not find the run script at {run_script_path}. "
92 "Please ensure it is named 'run.py' or adjust the test code."
93 )
95 # --- SETUP: Store original paths before changing them ---
96 original_cwd = Path.cwd()
97 original_sys_path = sys.path[:] # Create a copy of the sys.path list
99 module_name = f"agentlib_flexquant.tests.examples.{example_path.name}"
101 try:
102 # --- STEP 1: Change CWD for file access (e.g., config.json) ---
103 os.chdir(example_path)
105 # --- STEP 2: Add example dir to sys.path for module imports ---
106 sys.path.insert(0, str(example_path))
108 # Dynamically import the run_example function from the script
109 spec = importlib.util.spec_from_file_location(module_name, run_script_path)
110 run_module = importlib.util.module_from_spec(spec)
111 sys.modules[module_name] = run_module
112 spec.loader.exec_module(run_module)
114 if not hasattr(run_module, 'run_example'):
115 raise AttributeError(
116 "The 'run.py' script must contain a 'run_example' function.")
118 # Execute the function and get the results
119 results = run_module.run_example(until=3600)
120 return results
122 finally:
123 # --- TEARDOWN: Always restore original paths to avoid side-effects ---
124 os.chdir(original_cwd)
125 sys.path[:] = original_sys_path # Restore the original sys.path
128def test_oneroom_cia(snapshot, module_cleanup):
129 """Unit test for the OneRoom_CIA example using snapshot testing.
131 This test runs the example via its own run script and compares the
132 full resulting dataframes against stored snapshots.
134 """
135 # Define the path to the example directory
136 example_path = root_path / 'examples' / 'OneRoom_CIA'
138 # Run the example and get the results object
139 res = run_example_from_path(example_path)
141 # Extract the full resulting dataframes as requested
142 df_neg_flex_res = res["NegFlexMPC"]["NegFlexMPC"]
143 df_pos_flex_res = res["PosFlexMPC"]["PosFlexMPC"]
144 df_baseline_res = res["myMPCAgent"]["Baseline"]
145 df_indicator_res = res["FlexibilityIndicator"]["FlexibilityIndicator"]
147 # Assert that a summary of each result DataFrame matches its snapshot
148 assert_frame_matches_summary_snapshot(
149 snapshot,
150 df_neg_flex_res,
151 'oneroom_cia_neg_flex_summary.json'
152 )
153 assert_frame_matches_summary_snapshot(
154 snapshot,
155 df_pos_flex_res,
156 'oneroom_cia_pos_flex_summary.json'
157 )
158 assert_frame_matches_summary_snapshot(
159 snapshot,
160 df_baseline_res,
161 'oneroom_cia_baseline_summary.json'
162 )
163 assert_frame_matches_summary_snapshot(
164 snapshot,
165 df_indicator_res,
166 'oneroom_cia_indicator_summary.json'
167 )