Coverage for tests/test_oneRoom_SimpleMPC.py: 94%
50 statements
« prev ^ index » next coverage.py v7.4.4, created at 2025-08-01 15:10 +0000
« prev ^ index » next coverage.py v7.4.4, created at 2025-08-01 15:10 +0000
1import pytest
2import pandas as pd
3import os
4import sys
5from pathlib import Path
6import importlib.util
7import json
9# Add the project root to the Python path to allow for absolute imports
10# This helps in locating the agentlib_flexquant package if needed
11root_path = Path(__file__).parent.parent
12sys.path.insert(0, str(root_path))
15def create_dataframe_summary(df: pd.DataFrame, precision: int = 6) -> dict:
16 """
17 Creates a robust, compact summary of a DataFrame for snapshotting.
19 This summary is designed to be insensitive to minor floating-point differences
20 while being highly sensitive to meaningful data changes.
22 Args:
23 df: The pandas DataFrame to summarize.
24 precision: The number of decimal places to round float values to.
26 Returns:
27 A dictionary containing the summary.
28 """
29 if df is None or df.empty:
30 return {"error": "DataFrame is empty or None"}
32 # Get descriptive statistics and round them to handle float precision issues
33 summary_stats = df.describe().round(precision)
35 # Convert the stats DataFrame to a dictionary. This may have tuple keys.
36 stats_dict_raw = summary_stats.to_dict()
38 # Create a new dictionary, converting any tuple keys into strings.
39 # e.g., ('lower', 'P_el') becomes 'lower.P_el'
40 stats_dict_clean = {
41 ".".join(map(str, k)) if isinstance(k, tuple) else str(k): v
42 for k, v in stats_dict_raw.items()
43 }
45 # Create the final summary object
46 summary = {
47 "shape": df.shape,
48 "columns": df.columns.tolist(),
49 "index_start": str(df.index.min()),
50 "index_end": str(df.index.max()),
51 "statistics": stats_dict_clean,
52 "head_5_rows": df.head(5).round(precision).to_dict(orient='split'),
53 "tail_5_rows": df.tail(5).round(precision).to_dict(orient='split'),
54 }
55 return summary
57def assert_frame_matches_summary_snapshot(snapshot, df: pd.DataFrame,
58 snapshot_name: str):
59 """
60 Asserts that a DataFrame's summary matches a stored snapshot.
62 This function creates a summary of the dataframe and uses pytest-snapshot
63 to compare it against a stored version.
64 """
65 # Create a summary of the dataframe
66 summary = create_dataframe_summary(df)
68 # Convert the summary dictionary to a formatted JSON string
69 summary_json = json.dumps(summary, indent=2, sort_keys=True)
71 # Use snapshot.assert_match on the small, stable JSON string
72 snapshot.assert_match(summary_json, snapshot_name)
74def run_example_from_path(example_path: Path):
75 """
76 Dynamically imports and runs the 'run_example' function from a script
77 in the specified directory.
79 This function robustly handles changing the working directory AND the
80 Python import path, ensuring the script can find both its local files
81 and its local modules.
82 """
83 run_script_path = example_path / 'main_one_room_flex.py'
84 if not run_script_path.is_file():
85 raise FileNotFoundError(
86 f"Could not find the run script at {run_script_path}. "
87 "Please ensure it is named 'run.py' or adjust the test code."
88 )
90 # --- SETUP: Store original paths before changing them ---
91 original_cwd = Path.cwd()
92 original_sys_path = sys.path[:] # Create a copy of the sys.path list
94 try:
95 # --- STEP 1: Change CWD for file access (e.g., config.json) ---
96 os.chdir(example_path)
98 # --- STEP 2: Add example dir to sys.path for module imports ---
99 sys.path.insert(0, str(example_path))
101 # Dynamically import the run_example function from the script
102 spec = importlib.util.spec_from_file_location("run_module", run_script_path)
103 run_module = importlib.util.module_from_spec(spec)
104 spec.loader.exec_module(run_module)
106 if not hasattr(run_module, 'run_example'):
107 raise AttributeError(
108 "The 'run.py' script must contain a 'run_example' function.")
110 # Execute the function and get the results
111 results = run_module.run_example(until=3600)
112 return results
114 finally:
115 # --- TEARDOWN: Always restore original paths to avoid side-effects ---
116 os.chdir(original_cwd)
117 sys.path[:] = original_sys_path # Restore the original sys.path
120def test_oneroom_simple_mpc(snapshot):
121 """
122 Unit test for the oneroom_simpleMPC example using snapshot testing.
124 This test runs the example via its own run script and compares the
125 full resulting dataframes against stored snapshots.
126 """
127 # Define the path to the example directory
128 example_path = root_path / 'examples' / 'OneRoom_SimpleMPC'
130 # Run the example and get the results object
131 res = run_example_from_path(example_path)
133 # Extract the full resulting dataframes as requested
134 df_neg_flex_res = res["NegFlexMPC"]["NegFlexMPC"]
135 df_pos_flex_res = res["PosFlexMPC"]["PosFlexMPC"]
136 df_baseline_res = res["FlexModel"]["Baseline"]
137 df_indicator_res = res["FlexibilityIndicator"]["FlexibilityIndicator"]
139 # Assert that a summary of each result DataFrame matches its snapshot
140 assert_frame_matches_summary_snapshot(
141 snapshot,
142 df_neg_flex_res,
143 'oneroom_simpleMPC_neg_flex_summary.json'
144 )
145 assert_frame_matches_summary_snapshot(
146 snapshot,
147 df_pos_flex_res,
148 'oneroom_simpleMPC_pos_flex_summary.json'
149 )
150 assert_frame_matches_summary_snapshot(
151 snapshot,
152 df_baseline_res,
153 'oneroom_simpleMPC_baseline_summary.json'
154 )
155 assert_frame_matches_summary_snapshot(
156 snapshot,
157 df_indicator_res,
158 'oneroom_simpleMPC_indicator_summary.json'
159 )