Source code for agentlib_flexquant.generate_flex_agents

"""Generate agents for flexibility quantification.

This module provides the FlexAgentGenerator class that creates and configures flexibility agents.
The agents created include the baseline, positive and negative flexibility agents,
the flexibility indicator and market agents. The agents are created based on the flex config and
the MPC config.
"""
import ast
import atexit
import inspect
import json
import logging
import os
from copy import deepcopy
from pathlib import Path
from typing import Union

import astor
import black
import json
import numpy as np
from copy import deepcopy
from pathlib import Path
from typing import List, Union
from pydantic import FilePath
from agentlib.core.agent import AgentConfig
from agentlib.core.datamodels import AgentVariable
from agentlib.core.errors import ConfigurationError
from agentlib.core.module import BaseModuleConfig
from agentlib.utils import custom_injection, load_config
from agentlib_mpc.data_structures.mpc_datamodels import MPCVariable
from agentlib_mpc.models.casadi_model import CasadiModelConfig
from agentlib_mpc.modules.mpc_full import MPCConfig

from agentlib_mpc.optimization_backends.casadi_.basic import DirectCollocation
from agentlib_mpc.data_structures.casadi_utils import CasadiDiscretizationOptions
import agentlib_flexquant.data_structures.globals as glbs
import agentlib_flexquant.utils.config_management as cmng
from agentlib_flexquant.utils.parsing import SetupSystemModifier
from agentlib_flexquant.data_structures.flexquant import (
    FlexibilityIndicatorConfig,
    FlexibilityMarketConfig,
    FlexQuantConfig,
)
from agentlib_flexquant.data_structures.mpcs import BaselineMPCData, BaseMPCData
from agentlib_flexquant.modules.flexibility_indicator import (
    FlexibilityIndicatorModuleConfig,
)
from agentlib_flexquant.modules.flexibility_market import FlexibilityMarketModuleConfig


[docs]class FlexAgentGenerator: """Class for generating the flex agents orig_mpc_module_config: the config for the original mpc, which has nothing to do with the flexibility quantification baseline_mpc_module_config: the config for the baseline mpc for flexibility quantification pos_flex_mpc_module_config: the config for the positive flexibility mpc for flexibility quantification neg_flex_mpc_module_config: the config for the negative flexibility mpc for flexibility quantification indicator_module_config: the config for the indicator for flexibility quantification market_module_config: the config for the market for flexibility quantification """ orig_mpc_module_config: MPCConfig baseline_mpc_module_config: MPCConfig pos_flex_mpc_module_config: MPCConfig neg_flex_mpc_module_config: MPCConfig indicator_module_config: FlexibilityIndicatorModuleConfig market_module_config: FlexibilityMarketModuleConfig def __init__( self, flex_config: Union[str, FilePath, FlexQuantConfig], mpc_agent_config: Union[str, FilePath, AgentConfig], ): self.logger = logging.getLogger(__name__) if isinstance(flex_config, str or FilePath): self.flex_config_file_name = os.path.basename(flex_config) else: # provide default name for json self.flex_config_file_name = "flex_config.json" # load configs self.flex_config = load_config.load_config(flex_config, config_type=FlexQuantConfig) # original mpc agent self.orig_mpc_agent_config = load_config.load_config( mpc_agent_config, config_type=AgentConfig ) # baseline agent self.baseline_mpc_agent_config = self.orig_mpc_agent_config.__deepcopy__() # pos agent self.pos_flex_mpc_agent_config = self.orig_mpc_agent_config.__deepcopy__() # neg agent self.neg_flex_mpc_agent_config = self.orig_mpc_agent_config.__deepcopy__() # original mpc module self.orig_mpc_module_config = cmng.get_module( config=self.orig_mpc_agent_config, module_type=cmng.get_orig_module_type(self.orig_mpc_agent_config), ) # baseline module self.baseline_mpc_module_config = cmng.get_module( config=self.baseline_mpc_agent_config, module_type=cmng.get_orig_module_type(self.orig_mpc_agent_config), ) # convert agentlib_mpc’s ModuleConfig to flexquant’s ModuleConfig to include additional # fields not present in the original self.baseline_mpc_module_config = cmng.get_flex_mpc_module_config( agent_config=self.baseline_mpc_agent_config, module_config=self.baseline_mpc_module_config, module_type=self.flex_config.baseline_config_generator_data.module_types[ self.baseline_mpc_module_config.type ], ) # pos module self.pos_flex_mpc_module_config = cmng.get_module( config=self.pos_flex_mpc_agent_config, module_type=cmng.get_orig_module_type(self.orig_mpc_agent_config), ) # neg module self.neg_flex_mpc_module_config = cmng.get_module( config=self.neg_flex_mpc_agent_config, module_type=cmng.get_orig_module_type(self.orig_mpc_agent_config), ) # load indicator config self.indicator_config = load_config.load_config( self.flex_config.indicator_config, config_type=FlexibilityIndicatorConfig ) # load indicator module config self.indicator_agent_config = load_config.load_config( self.indicator_config.agent_config, config_type=AgentConfig ) self.indicator_module_config = cmng.get_module( config=self.indicator_agent_config, module_type=cmng.INDICATOR_CONFIG_TYPE ) # load market config if self.flex_config.market_config: self.market_config = load_config.load_config( self.flex_config.market_config, config_type=FlexibilityMarketConfig ) # load market module config self.market_agent_config = load_config.load_config( self.market_config.agent_config, config_type=AgentConfig ) self.market_module_config = cmng.get_module( config=self.market_agent_config, module_type=cmng.MARKET_CONFIG_TYPE ) else: self.flex_config.market_time = 0 self.run_config_validations()
[docs] def generate_flex_agents(self) -> list[str]: """Generate the configs and the python module for the flexibility agents. Returns: list of the full path for baseline mpc, pos_flex mpc, neg_flex mpc, indicator and market config """ # adapt modules to include necessary communication variables baseline_mpc_config = self.adapt_mpc_module_config( module_config=self.baseline_mpc_module_config, mpc_dataclass=self.flex_config.baseline_config_generator_data, agent_id=self.baseline_mpc_agent_config.id, ) pf_mpc_config = self.adapt_mpc_module_config( module_config=self.pos_flex_mpc_module_config, mpc_dataclass=self.flex_config.shadow_mpc_config_generator_data.pos_flex, agent_id=self.pos_flex_mpc_agent_config.id, ) nf_mpc_config = self.adapt_mpc_module_config( module_config=self.neg_flex_mpc_module_config, mpc_dataclass=self.flex_config.shadow_mpc_config_generator_data.neg_flex, agent_id=self.neg_flex_mpc_agent_config.id, ) indicator_module_config = self.adapt_indicator_config( module_config=self.indicator_module_config ) if self.flex_config.market_config: market_module_config = self.adapt_market_config(module_config=self.market_module_config) # dump jsons of the agents including the adapted module configs self.append_module_and_dump_agent( module=baseline_mpc_config, agent=self.baseline_mpc_agent_config, module_type=cmng.get_orig_module_type(self.orig_mpc_agent_config), config_name=self.flex_config.baseline_config_generator_data.name_of_created_file, ) self.append_module_and_dump_agent( module=pf_mpc_config, agent=self.pos_flex_mpc_agent_config, module_type=cmng.get_orig_module_type(self.orig_mpc_agent_config), config_name=self.flex_config.shadow_mpc_config_generator_data.pos_flex.name_of_created_file, ) self.append_module_and_dump_agent( module=nf_mpc_config, agent=self.neg_flex_mpc_agent_config, module_type=cmng.get_orig_module_type(self.orig_mpc_agent_config), config_name=self.flex_config.shadow_mpc_config_generator_data.neg_flex.name_of_created_file, ) self.append_module_and_dump_agent( module=indicator_module_config, agent=self.indicator_agent_config, module_type=cmng.INDICATOR_CONFIG_TYPE, config_name=self.indicator_config.name_of_created_file, ) if self.flex_config.market_config: self.append_module_and_dump_agent( module=market_module_config, agent=self.market_agent_config, module_type=cmng.MARKET_CONFIG_TYPE, config_name=self.market_config.name_of_created_file, ) # generate python files for the shadow mpcs self._generate_flex_model_definition() # save flex config to created flex files with open( os.path.join(self.flex_config.flex_files_directory, self.flex_config_file_name), "w", encoding="utf-8", ) as f: config_json = self.flex_config.model_dump_json(exclude_defaults=True) f.write(config_json) # register the exit function if the corresponding flag is set if self.flex_config.delete_files: atexit.register(lambda: self._delete_created_files()) return self.get_config_file_paths()
[docs] def append_module_and_dump_agent( self, module: BaseModuleConfig, agent: AgentConfig, module_type: str, config_name: str, ): """Append the given module config to the given agent config and dumps the agent config to a json file. The json file is named based on the config_name. Args: module: The module config to be appended. agent: The agent config to be updated. module_type: The type of the module config_name: The name of the json file for module config (e.g. baseline.json) """ # if module is not from the baseline, set a new agent id, based on module id if module.type is not self.baseline_mpc_module_config.type: agent.id = module.module_id # get the module as a dict without default values module_dict = cmng.to_dict_and_remove_unnecessary_fields(module=module) # write given module to agent config for i, agent_module in enumerate(agent.modules): if cmng.MODULE_TYPE_DICT[module_type] is cmng.MODULE_TYPE_DICT[agent_module["type"]]: agent.modules[i] = module_dict # dump agent config if agent.modules: if self.flex_config.overwrite_files: try: Path(os.path.join(self.flex_config.flex_files_directory, config_name)).unlink() except OSError: pass with open( os.path.join(self.flex_config.flex_files_directory, config_name), "w+", encoding="utf-8", ) as f: module_json = agent.model_dump_json(exclude_defaults=True) f.write(module_json) else: logging.error("Provided agent config does not contain any modules.")
[docs] def get_config_file_paths(self) -> list[str]: """Return a list of paths with the created config files.""" paths = [ os.path.join( self.flex_config.flex_files_directory, self.flex_config.baseline_config_generator_data.name_of_created_file, ), os.path.join( self.flex_config.flex_files_directory, self.flex_config.shadow_mpc_config_generator_data.pos_flex.name_of_created_file, ), os.path.join( self.flex_config.flex_files_directory, self.flex_config.shadow_mpc_config_generator_data.neg_flex.name_of_created_file, ), os.path.join( self.flex_config.flex_files_directory, self.indicator_config.name_of_created_file, ), ] if self.flex_config.market_config: paths.append( os.path.join( self.flex_config.flex_files_directory, self.market_config.name_of_created_file, ) ) return paths
def _delete_created_files(self): """Function to run at exit if the files are to be deleted.""" to_be_deleted = self.get_config_file_paths() to_be_deleted.append( os.path.join( self.flex_config.flex_files_directory, self.flex_config_file_name, ) ) # delete files for file in to_be_deleted: Path(file).unlink() # also delete folder Path(self.flex_config.flex_files_directory).rmdir()
[docs] def adapt_mpc_module_config( self, module_config: MPCConfig, mpc_dataclass: BaseMPCData, agent_id: str ) -> MPCConfig: """Adapt the mpc module config for automated flexibility quantification. Things adapted among others are: - the file name/path of the mpc config file - names of the control variables for the shadow mpcs - reduce communicated variables of shadow mpcs to outputs - add the power variable to the outputs - add parameters for the activation and quantification of flexibility Args: module_config: The module config to be adapted mpc_dataclass: The dataclass corresponding to the type of the MPC module. It contains all the extra data necessary for flexibility quantification, which will be used to update the module_config. agent_id: agent_id for creating the flexquant mpc module config Returns: The adapted module config """ # allow the module config to be changed module_config.model_config["frozen"] = False # set new MPC type module_config.type = mpc_dataclass.module_types[ cmng.get_orig_module_type(self.orig_mpc_agent_config) ] # set the MPC config type from the MPCConfig in agentlib_mpc to the corresponding one in # flexquant and add additional fields module_config_flex_dict = module_config.model_dump() module_config_flex_dict["casadi_sim_time_step"] = self.flex_config.casadi_sim_time_step module_config_flex_dict[ "power_variable_name" ] = self.flex_config.baseline_config_generator_data.power_variable module_config_flex_dict[ "storage_variable_name" ] = self.indicator_module_config.correct_costs.stored_energy_variable module_config_flex = cmng.MODULE_TYPE_DICT[module_config.type]( **module_config_flex_dict, _agent_id=agent_id ) # allow the module config to be changed module_config_flex.model_config["frozen"] = False module_config_flex.module_id = mpc_dataclass.module_id # append the new weights as parameter to the MPC or update its value parameter_dict = {parameter.name: parameter for parameter in module_config_flex.parameters} for weight in mpc_dataclass.weights: if weight.name in parameter_dict: parameter_dict[weight.name].value = weight.value else: module_config_flex.parameters.append(weight) # set new id (needed for plotting) module_config_flex.module_id = mpc_dataclass.module_id # update optimization backend to use the created mpc files and classes module_config_flex.optimization_backend["model"]["type"] = { "file": os.path.join( self.flex_config.flex_files_directory, mpc_dataclass.created_flex_mpcs_file, ), "class_name": mpc_dataclass.class_name, } # extract filename from results file and update it with suffix and parent directory result_filename = Path( module_config_flex.optimization_backend["results_file"] ).name.replace(".csv", mpc_dataclass.results_suffix) full_path = self.flex_config.results_directory / result_filename module_config_flex.optimization_backend["results_file"] = str(full_path) # change cia backend to custom backend of flexquant if module_config_flex.optimization_backend["type"] == "casadi_cia": module_config_flex.optimization_backend["type"] = "casadi_cia_cons" module_config_flex.optimization_backend["market_time"] = self.flex_config.market_time # add the full control trajectory output from the baseline as input for the shadow mpcs if not isinstance(mpc_dataclass, BaselineMPCData): for control in module_config_flex.controls: module_config_flex.inputs.append( MPCVariable( name=control.name + glbs.full_trajectory_suffix, value=None, type="pd.Series", ) ) # change the alias of control variable in shadow mpc to prevent it from triggering # the wrong callback control.alias = control.name + glbs.shadow_suffix # also include binary controls if hasattr(module_config_flex, "binary_controls"): for control in module_config_flex.binary_controls: module_config_flex.inputs.append( MPCVariable( name=control.name + glbs.full_trajectory_suffix, value=None, type="pd.Series", ) ) # change the alias of control variable in shadow mpc to prevent it from # triggering the wrong callback control.alias = control.name + glbs.shadow_suffix # only communicate outputs for the shadow mpcs module_config_flex.shared_variable_fields = ["outputs"] else: # add full_controls trajectory as AgentVariable to the config of Baseline mpc for control in module_config_flex.controls: module_config_flex.full_controls.append( AgentVariable( name=control.name + glbs.full_trajectory_suffix, alias=control.name + glbs.full_trajectory_suffix, shared=True, ) ) if hasattr(module_config_flex, "binary_controls"): for binary_controls in module_config_flex.binary_controls: module_config_flex.full_controls.append( AgentVariable( name=binary_controls.name + glbs.full_trajectory_suffix, alias=binary_controls.name + glbs.full_trajectory_suffix, shared=True, ) ) module_config_flex.set_outputs = True # add outputs for the power variables, for easier handling create a lookup dict output_dict = {output.name: output for output in module_config_flex.outputs} if self.flex_config.baseline_config_generator_data.power_variable in output_dict: output_dict[ self.flex_config.baseline_config_generator_data.power_variable ].alias = mpc_dataclass.power_alias else: module_config_flex.outputs.append( MPCVariable( name=self.flex_config.baseline_config_generator_data.power_variable, alias=mpc_dataclass.power_alias, ) ) # add or change alias for stored energy variable if self.indicator_module_config.correct_costs.enable_energy_costs_correction: output_dict[ self.indicator_module_config.correct_costs.stored_energy_variable ].alias = mpc_dataclass.stored_energy_alias # add extra inputs needed for activation of flex module_config_flex.inputs.extend(mpc_dataclass.config_inputs_appendix) # CONFIG_PARAMETERS_APPENDIX only includes dummy values # overwrite dummy values with values from flex config and append it to module config for var in mpc_dataclass.config_parameters_appendix: if var.name in self.flex_config.model_fields: var.value = getattr(self.flex_config, var.name) if var.name in self.flex_config.baseline_config_generator_data.model_fields: var.value = getattr(self.flex_config.baseline_config_generator_data, var.name) module_config_flex.parameters.extend(mpc_dataclass.config_parameters_appendix) # freeze the config again module_config_flex.model_config["frozen"] = True return module_config_flex
[docs] def adapt_indicator_config( self, module_config: FlexibilityIndicatorModuleConfig ) -> FlexibilityIndicatorModuleConfig: """Adapt the indicator module config for automated flexibility quantification.""" # append user-defined price var to indicator module config module_config.inputs.append( AgentVariable( name=module_config.price_variable, unit="ct/kWh", type="pd.Series", description="electricity price", ) ) # allow the module config to be changed module_config.model_config["frozen"] = False for parameter in module_config.parameters: if parameter.name == glbs.PREP_TIME: parameter.value = self.flex_config.prep_time if parameter.name == glbs.MARKET_TIME: parameter.value = self.flex_config.market_time if parameter.name == glbs.FLEX_EVENT_DURATION: parameter.value = self.flex_config.flex_event_duration if parameter.name == glbs.TIME_STEP: parameter.value = self.baseline_mpc_module_config.time_step if parameter.name == glbs.PREDICTION_HORIZON: parameter.value = self.baseline_mpc_module_config.prediction_horizon if parameter.name == glbs.COLLOCATION_TIME_GRID: discretization_options = self.baseline_mpc_module_config.optimization_backend[ "discretization_options" ] parameter.value = self.get_collocation_time_grid( discretization_options=discretization_options ) # set power unit module_config.power_unit = self.flex_config.baseline_config_generator_data.power_unit module_config.results_file = ( self.flex_config.results_directory / module_config.results_file.name ) module_config.model_config["frozen"] = True return module_config
[docs] def adapt_market_config( self, module_config: FlexibilityMarketModuleConfig ) -> FlexibilityMarketModuleConfig: """Adapt the market module config for automated flexibility quantification.""" # allow the module config to be changed module_config.model_config["frozen"] = False for field in module_config.__fields__: if field in self.market_module_config.__fields__.keys(): module_config.__setattr__(field, getattr(self.market_module_config, field)) module_config.results_file = ( self.flex_config.results_directory / module_config.results_file.name ) for parameter in module_config.parameters: if parameter.name == glbs.COLLOCATION_TIME_GRID: discretization_options = self.baseline_mpc_module_config.optimization_backend[ "discretization_options" ] parameter.value = self.get_collocation_time_grid( discretization_options=discretization_options ) if parameter.name == glbs.TIME_STEP: parameter.value = self.baseline_mpc_module_config.time_step module_config.model_config["frozen"] = True return module_config
[docs] def get_collocation_time_grid(self, discretization_options: dict): """Get the mpc output collocation grid over the horizon""" # get the mpc time grid configuration time_step = self.baseline_mpc_module_config.time_step prediction_horizon = self.baseline_mpc_module_config.prediction_horizon # get the collocation configuration collocation_method = discretization_options["collocation_method"] collocation_order = discretization_options["collocation_order"] # get the collocation points options = CasadiDiscretizationOptions( collocation_order=collocation_order, collocation_method=collocation_method ) collocation_points = DirectCollocation(options=options)._collocation_polynomial().root # compute the mpc output collocation grid discretization_points = np.arange(0, time_step * prediction_horizon, time_step) collocation_time_grid = ( discretization_points[:, None] + collocation_points * time_step ).ravel() collocation_time_grid = collocation_time_grid[ ~np.isin(collocation_time_grid, discretization_points) ] collocation_time_grid = collocation_time_grid.tolist() return collocation_time_grid
def _generate_flex_model_definition(self): """Generate a python module for negative and positive flexibility agents from the Baseline MPC model.""" output_file = os.path.join( self.flex_config.flex_files_directory, self.flex_config.baseline_config_generator_data.created_flex_mpcs_file, ) opt_backend = self.orig_mpc_module_config.optimization_backend["model"]["type"] # Extract the config class of the casadi model to check cost functions config_class = inspect.get_annotations(custom_injection(opt_backend))["config"] config_instance = config_class() self.check_variables_in_casadi_config( config_instance, self.flex_config.shadow_mpc_config_generator_data.neg_flex.flex_cost_function, ) self.check_variables_in_casadi_config( config_instance, self.flex_config.shadow_mpc_config_generator_data.pos_flex.flex_cost_function, ) # parse mpc python file with open(opt_backend["file"], "r", encoding="utf-8") as f: source = f.read() tree = ast.parse(source) # create modifiers for python file modifier_base = SetupSystemModifier( mpc_data=self.flex_config.baseline_config_generator_data, controls=self.baseline_mpc_module_config.controls, binary_controls=self.baseline_mpc_module_config.binary_controls if hasattr(self.baseline_mpc_module_config, "binary_controls") else None, ) modifier_pos = SetupSystemModifier( mpc_data=self.flex_config.shadow_mpc_config_generator_data.pos_flex, controls=self.pos_flex_mpc_module_config.controls, binary_controls=self.pos_flex_mpc_module_config.binary_controls if hasattr(self.pos_flex_mpc_module_config, "binary_controls") else None, ) modifier_neg = SetupSystemModifier( mpc_data=self.flex_config.shadow_mpc_config_generator_data.neg_flex, controls=self.neg_flex_mpc_module_config.controls, binary_controls=self.neg_flex_mpc_module_config.binary_controls if hasattr(self.neg_flex_mpc_module_config, "binary_controls") else None, ) # run the modification modified_tree_base = modifier_base.visit(deepcopy(tree)) modified_tree_pos = modifier_pos.visit(deepcopy(tree)) modified_tree_neg = modifier_neg.visit(deepcopy(tree)) # combine modifications to one file modified_tree = ast.Module(body=[], type_ignores=[]) modified_tree.body.extend( modified_tree_base.body + modified_tree_pos.body + modified_tree_neg.body ) modified_source = astor.to_source(modified_tree) # Use black to format the generated code formatted_code = black.format_str(modified_source, mode=black.FileMode()) if self.flex_config.overwrite_files: try: Path( os.path.join( self.flex_config.flex_files_directory, self.flex_config.baseline_config_generator_data.created_flex_mpcs_file, ) ).unlink() except OSError: pass with open(output_file, "w", encoding="utf-8") as f: f.write(formatted_code)
[docs] def check_variables_in_casadi_config(self, config: CasadiModelConfig, expr: str): """Check if all variables in the expression are defined in the config. Args: config: casadi model config. expr: The expression to check. Raises: ValueError: If any variable in the expression is not defined in the config. """ variables_in_config = set(config.get_variable_names()) variables_in_cost_function = set(ast.walk(ast.parse(expr))) variables_in_cost_function = { node.attr for node in variables_in_cost_function if isinstance(node, ast.Attribute) } variables_newly_created = set( weight.name for weight in self.flex_config.shadow_mpc_config_generator_data.weights ) unknown_vars = variables_in_cost_function - variables_in_config - variables_newly_created if unknown_vars: raise ValueError(f"Unknown variables in new cost function: {unknown_vars}")
[docs] def run_config_validations(self): """Function to validate integrity of user-supplied flex config. Since the validation depends on interactions between multiple configurations, it is performed within this function rather than using Pydantic’s built-in validators for individual configurations. The following checks are performed: 1. Ensures the specified power variable exists in the MPC model outputs. 2. Ensures the specified comfort variable exists in the MPC model states. 3. Validates that the stored energy variable exists in MPC outputs if energy cost correction is enabled. 4. Verifies the supported collocation method is used; otherwise, switches to 'legendre' and raises a warning. 5. Ensures that the sum of prep time, market time, and flex event duration does not exceed the prediction horizon. 6. Ensures market time equals the MPC model time step if market config is present. 7. Ensures that all flex time values are multiples of the MPC model time step. 8. Checks for mismatches between time-related parameters in the flex/MPC and indicator configs and issues warnings when discrepancies exist, using the flex/MPC config values as the source of truth. """ # check if the power variable exists in the mpc config power_var = self.flex_config.baseline_config_generator_data.power_variable if power_var not in [output.name for output in self.baseline_mpc_module_config.outputs]: raise ConfigurationError( f"Given power variable {power_var} is not defined " f"as output in baseline mpc config." ) # check if the comfort variable exists in the mpc slack variables if self.flex_config.baseline_config_generator_data.comfort_variable: file_path = self.baseline_mpc_module_config.optimization_backend["model"]["type"][ "file" ] class_name = self.baseline_mpc_module_config.optimization_backend["model"]["type"][ "class_name" ] # Get the class dynamic_class = cmng.get_class_from_file(file_path, class_name) if self.flex_config.baseline_config_generator_data.comfort_variable not in [ state.name for state in dynamic_class().states ]: raise ConfigurationError( f"Given comfort variable " f"{self.flex_config.baseline_config_generator_data.comfort_variable} " f"is not defined as state in baseline mpc config." ) # check if the energy storage variable exists in the mpc config if self.indicator_module_config.correct_costs.enable_energy_costs_correction: if self.indicator_module_config.correct_costs.stored_energy_variable not in [ output.name for output in self.baseline_mpc_module_config.outputs ]: raise ConfigurationError( f"The stored energy variable " f"{self.indicator_module_config.correct_costs.stored_energy_variable} " f"is not defined in baseline mpc config. " f"It must be defined in the base MPC model and config as output " f"if the correction of costs is enabled." ) # raise warning if unsupported collocation method is used and change to supported method if ( "collocation_method" not in self.baseline_mpc_module_config.optimization_backend["discretization_options"] ): raise ConfigurationError( "Please use collocation as discretization method and define the collocation_method " "in the mpc config" ) else: collocation_method = self.baseline_mpc_module_config.optimization_backend[ "discretization_options" ]["collocation_method"] if collocation_method != "legendre": self.logger.warning( "Collocation method %s is not supported. Switching to method legendre.", collocation_method, ) self.baseline_mpc_module_config.optimization_backend["discretization_options"][ "collocation_method" ] = "legendre" self.pos_flex_mpc_module_config.optimization_backend["discretization_options"][ "collocation_method" ] = "legendre" self.neg_flex_mpc_module_config.optimization_backend["discretization_options"][ "collocation_method" ] = "legendre" # time data validations flex_times = { glbs.PREP_TIME: self.flex_config.prep_time, glbs.MARKET_TIME: self.flex_config.market_time, glbs.FLEX_EVENT_DURATION: self.flex_config.flex_event_duration, } mpc_times = { glbs.TIME_STEP: self.baseline_mpc_module_config.time_step, glbs.PREDICTION_HORIZON: self.baseline_mpc_module_config.prediction_horizon, } # total time length check (prep+market+flex_event) if sum(flex_times.values()) > mpc_times["time_step"] * mpc_times["prediction_horizon"]: raise ConfigurationError( "Market time + prep time + flex event duration " "can not exceed the prediction horizon." ) # market time val check if self.flex_config.market_config: if flex_times["market_time"] % mpc_times["time_step"] != 0: raise ConfigurationError( "Market time must be an integer multiple of the time step." ) # check for divisibility of flex_times by time_step for name, value in flex_times.items(): if value % mpc_times["time_step"] != 0: raise ConfigurationError( f"{name} is not a multiple of the time step. Please redefine." ) # raise warning if parameter value in flex indicator module config differs from # value in flex config/ baseline mpc module config for parameter in self.indicator_module_config.parameters: if parameter.value is not None: if parameter.name in flex_times: flex_value = flex_times[parameter.name] if parameter.value != flex_value: self.logger.warning( "Value mismatch for %s in flex config (field) " "and indicator module config (parameter). " "Flex config value will be used.", parameter.name, ) elif parameter.name in mpc_times: mpc_value = mpc_times[parameter.name] if parameter.value != mpc_value: self.logger.warning( "Value mismatch for %s in baseline MPC module " "config (field) and indicator module config (parameter). " "Baseline MPC module config value will be used.", parameter.name, )
[docs] def adapt_sim_results_path(self, simulator_agent_config: Union[str, Path]) -> dict: """ Optional helper function to adapt file path for simulator results in sim config, so that sim results land in the same results directory as flex results. Args: simulator_agent_config: Path to the simulator agent config JSON file. Returns: The updated simulator config dictionary with the modified result file path. Raises: FileNotFoundError: If the specified config file does not exist. """ # open config and extract sim module with open(simulator_agent_config, "r", encoding="utf-8") as f: sim_config = json.load(f) sim_module_config = next( (module for module in sim_config["modules"] if module["type"] == "simulator"), None, ) # convert filename string to path and extract the name sim_file_name = Path(sim_module_config["result_filename"]).name # set results path so that sim results lands in same directory as flex result CSVs sim_module_config["result_filename"] = str( self.flex_config.results_directory / sim_file_name ) return sim_config