Source code for agentlib_flexquant.modules.flexibility_indicator

import logging
import os
from pathlib import Path
from typing import List, Optional

import agentlib
import numpy as np
import pandas as pd
from agentlib.core.errors import ConfigurationError
from pydantic import BaseModel, ConfigDict, Field, model_validator

import agentlib_flexquant.data_structures.globals as glbs
from agentlib_flexquant.data_structures.flex_kpis import (
    FlexibilityData, 
    FlexibilityKPIs
)
from agentlib_flexquant.data_structures.flex_offer import FlexOffer


[docs] class InputsForCorrectFlexCosts(BaseModel): enable_energy_costs_correction: bool = Field( name="enable_energy_costs_correction", description="Variable determining whether to correct the costs of the flexible energy" "Define the variable for stored electrical energy in the base MPC model and config as output if the correction of costs is enabled", default=False ) absolute_power_deviation_tolerance: float = Field( name="absolute_power_deviation_tolerance", default=0.1, description="Absolute tolerance in kW within which no warning is thrown" ) stored_energy_variable: str = Field( name="stored_energy_variable", default="E_stored", description="Name of the variable representing the stored electrical energy in the baseline config" )
[docs] class InputsForCalculateFlexCosts(BaseModel): use_constant_electricity_price: bool = Field( default=False, description="Use constant electricity price" ) calculate_flex_costs: bool = Field( default=True, description="Calculate the flexibility cost" ) const_electricity_price: float = Field( default=np.nan, description="constant electricity price in ct/kWh" )
[docs] @model_validator(mode="after") def validate_constant_price(cls, model): if model.use_constant_electricity_price and np.isnan(model.const_electricity_price): raise Exception(f'Constant electricity price must have a valid value in float if it is to be used for calculation. ' f'Received "use_constant_electricity_price": true, "const_electricity_price": {model.const_electricity_price}. ' f'Please specify them correctly in "calculate_costs" field in flex config.') return model
# Pos and neg kpis to get the right names for plotting kpis_pos = FlexibilityKPIs(direction="positive") kpis_neg = FlexibilityKPIs(direction="negative")
[docs] class FlexibilityIndicatorModuleConfig(agentlib.BaseModuleConfig): model_config = ConfigDict( extra='forbid' ) inputs: List[agentlib.AgentVariable] = [ agentlib.AgentVariable(name=glbs.POWER_ALIAS_BASE, unit="W", type="pd.Series", description="The power input to the system"), agentlib.AgentVariable(name=glbs.POWER_ALIAS_NEG, unit="W", type="pd.Series", description="The power input to the system"), agentlib.AgentVariable(name=glbs.POWER_ALIAS_POS, unit="W", type="pd.Series", description="The power input to the system"), agentlib.AgentVariable(name=glbs.STORED_ENERGY_ALIAS_BASE, unit="kWh", type="pd.Series", description="Energy stored in the system w.r.t. 0K"), agentlib.AgentVariable(name=glbs.STORED_ENERGY_ALIAS_NEG, unit="kWh", type="pd.Series", description="Energy stored in the system w.r.t. 0K"), agentlib.AgentVariable(name=glbs.STORED_ENERGY_ALIAS_POS, unit="kWh", type="pd.Series", description="Energy stored in the system w.r.t. 0K") ] outputs: List[agentlib.AgentVariable] = [ # Flexibility offer agentlib.AgentVariable(name=glbs.FlexibilityOffer, type="FlexOffer"), # Power KPIs agentlib.AgentVariable( name=kpis_neg.power_flex_full.get_kpi_identifier(), unit='W', type="pd.Series", description="Negative power flexibility" ), agentlib.AgentVariable( name=kpis_pos.power_flex_full.get_kpi_identifier(), unit='W', type="pd.Series", description="Positive power flexibility" ), agentlib.AgentVariable( name=kpis_neg.power_flex_offer.get_kpi_identifier(), unit='W', type="pd.Series", description="Negative power flexibility" ), agentlib.AgentVariable( name=kpis_pos.power_flex_offer.get_kpi_identifier(), unit='W', type="pd.Series", description="Positive power flexibility" ), agentlib.AgentVariable( name=kpis_neg.power_flex_offer_min.get_kpi_identifier(), unit='W', type="float", description="Minimum of negative power flexibility" ), agentlib.AgentVariable( name=kpis_pos.power_flex_offer_min.get_kpi_identifier(), unit='W', type="float", description="Minimum of positive power flexibility" ), agentlib.AgentVariable( name=kpis_neg.power_flex_offer_max.get_kpi_identifier(), unit='W', type="float", description="Maximum of negative power flexibility" ), agentlib.AgentVariable( name=kpis_pos.power_flex_offer_max.get_kpi_identifier(), unit='W', type="float", description="Maximum of positive power flexibility" ), agentlib.AgentVariable( name=kpis_neg.power_flex_offer_avg.get_kpi_identifier(), unit='W', type="float", description="Average of negative power flexibility" ), agentlib.AgentVariable( name=kpis_pos.power_flex_offer_avg.get_kpi_identifier(), unit='W', type="float", description="Average of positive power flexibility" ), agentlib.AgentVariable( name=kpis_neg.power_flex_within_boundary.get_kpi_identifier(), unit='-', type="bool", description="Variable indicating whether the baseline power and flex power align at the horizon end" ), agentlib.AgentVariable( name=kpis_pos.power_flex_within_boundary.get_kpi_identifier(), unit='-', type="bool", description="Variable indicating whether the baseline power and flex power align at the horizon end" ), # Energy KPIs agentlib.AgentVariable( name=kpis_neg.energy_flex.get_kpi_identifier(), unit='kWh', type="float", description="Negative energy flexibility" ), agentlib.AgentVariable( name=kpis_pos.energy_flex.get_kpi_identifier(), unit='kWh', type="float", description="Positive energy flexibility" ), # Costs KPIs agentlib.AgentVariable( name=kpis_neg.costs.get_kpi_identifier(), unit="ct", type="float", description="Saved costs due to baseline" ), agentlib.AgentVariable( name=kpis_pos.costs.get_kpi_identifier(), unit="ct", type="float", description="Saved costs due to baseline" ), agentlib.AgentVariable( name=kpis_neg.corrected_costs.get_kpi_identifier(), unit="ct", type="float", description="Corrected saved costs due to baseline" ), agentlib.AgentVariable( name=kpis_pos.corrected_costs.get_kpi_identifier(), unit="ct", type="float", description="Corrected saved costs due to baseline" ), agentlib.AgentVariable( name=kpis_neg.costs_rel.get_kpi_identifier(), unit='ct/kWh', type="float", description="Saved costs due to baseline" ), agentlib.AgentVariable( name=kpis_pos.costs_rel.get_kpi_identifier(), unit='ct/kWh', type="float", description="Saved costs due to baseline" ), agentlib.AgentVariable( name=kpis_neg.corrected_costs_rel.get_kpi_identifier(), unit='ct/kWh', type="float", description="Corrected saved costs per energy due to baseline" ), agentlib.AgentVariable( name=kpis_pos.corrected_costs_rel.get_kpi_identifier(), unit='ct/kWh', type="float", description="Corrected saved costs per energy due to baseline" ) ] parameters: List[agentlib.AgentVariable] = [ agentlib.AgentVariable(name=glbs.PREP_TIME, unit="s", description="Preparation time"), agentlib.AgentVariable(name=glbs.MARKET_TIME, unit="s", description="Market time"), agentlib.AgentVariable(name=glbs.FLEX_EVENT_DURATION, unit="s", description="time to switch objective"), agentlib.AgentVariable(name=glbs.TIME_STEP, unit="s", description="timestep of the mpc solution"), agentlib.AgentVariable(name=glbs.PREDICTION_HORIZON, unit="-", description="prediction horizon of the mpc solution") ] results_file: Optional[Path] = Field( default=Path("flexibility_indicator.csv"), description="User specified results file name" ) save_results: Optional[bool] = Field( validate_default=True, default=True ) price_variable: str = Field( default="c_pel", description="Name of the price variable sent by a predictor", ) power_unit: str = Field( default="kW", description="Unit of the power variable" ) shared_variable_fields: List[str] = ["outputs"] correct_costs: InputsForCorrectFlexCosts = InputsForCorrectFlexCosts() calculate_costs: InputsForCalculateFlexCosts = InputsForCalculateFlexCosts()
[docs] @model_validator(mode="after") def check_results_file_extension(self): if self.results_file and self.results_file.suffix != ".csv": raise ValueError( f"Invalid file extension for 'results_file': '{self.results_file}'. " f"Expected a '.csv' file." ) return self
[docs] class FlexibilityIndicatorModule(agentlib.BaseModule): config: FlexibilityIndicatorModuleConfig data: FlexibilityData def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.var_list = [] for variable in self.variables: if variable.name in [glbs.FlexibilityOffer]: continue self.var_list.append(variable.name) self.time = [] self.in_provision = False self.offer_count = 0 self.data = FlexibilityData( prep_time=self.get(glbs.PREP_TIME).value, market_time=self.get(glbs.MARKET_TIME).value, flex_event_duration=self.get(glbs.FLEX_EVENT_DURATION).value, time_step=self.get(glbs.TIME_STEP).value, prediction_horizon=self.get(glbs.PREDICTION_HORIZON).value ) self.df = pd.DataFrame(columns=pd.Series(self.var_list))
[docs] def register_callbacks(self): inputs = self.config.inputs for var in inputs: self.agent.data_broker.register_callback( name=var.name, alias=var.name, callback=self.callback ) self.agent.data_broker.register_callback( name="in_provision", alias="in_provision", callback=self.callback )
[docs] def process(self): yield self.env.event()
[docs] def callback(self, inp, name): if name == "in_provision": self.in_provision = inp.value if self.in_provision: self._set_inputs_to_none() if not self.in_provision: if name == glbs.POWER_ALIAS_BASE: self.data.power_profile_base = self.data.format_mpc_inputs(inp.value) elif name == glbs.POWER_ALIAS_NEG: self.data.power_profile_flex_neg = self.data.format_mpc_inputs(inp.value) elif name == glbs.POWER_ALIAS_POS: self.data.power_profile_flex_pos = self.data.format_mpc_inputs(inp.value) elif name == glbs.STORED_ENERGY_ALIAS_BASE: self.data.stored_energy_profile_base = self.data.format_mpc_inputs(inp.value) elif name == glbs.STORED_ENERGY_ALIAS_NEG: self.data.stored_energy_profile_flex_neg = self.data.format_mpc_inputs(inp.value) elif name == glbs.STORED_ENERGY_ALIAS_POS: self.data.stored_energy_profile_flex_pos = self.data.format_mpc_inputs(inp.value) elif name == self.config.price_variable: if not self.config.calculate_costs.use_constant_electricity_price: # price comes from predictor, so no stripping needed self.data.electricity_price_series = self.data.format_predictor_inputs(inp.value) # set the constant electricity price series if given if self.config.calculate_costs.use_constant_electricity_price and self.data.electricity_price_series is None: # get the index for the electricity price series n = self.get(glbs.PREDICTION_HORIZON).value ts = self.get(glbs.TIME_STEP).value grid = np.arange(0, n * ts, ts) # fill the electricity_price_series with values electricity_price_series = pd.Series([self.config.calculate_costs.const_electricity_price for i in grid], index=grid) self.data.electricity_price_series = self.data.format_predictor_inputs(electricity_price_series) necessary_input_for_calc_flex = [self.data.power_profile_base, self.data.power_profile_flex_neg, self.data.power_profile_flex_pos] if self.config.calculate_costs.calculate_flex_costs: necessary_input_for_calc_flex.append(self.data.electricity_price_series) if self.config.correct_costs.enable_energy_costs_correction: necessary_input_for_calc_flex.extend( [self.data.stored_energy_profile_base, self.data.stored_energy_profile_flex_neg, self.data.stored_energy_profile_flex_pos]) if all(var is not None for var in necessary_input_for_calc_flex): # check the power profile end deviation if not self.config.correct_costs.enable_energy_costs_correction: self.check_power_end_deviation(tol=self.config.correct_costs.absolute_power_deviation_tolerance) # Calculate the flexibility, send the offer, write and save the results self.calc_and_send_offer() # set the values to None to reset the callback self._set_inputs_to_none()
[docs] def get_results(self) -> Optional[pd.DataFrame]: """ Opens results file of flexibility_indicator.py results_file defined in __init__ """ results_file = self.config.results_file try: results = pd.read_csv(results_file, header=[0], index_col=[0, 1]) return results except FileNotFoundError: self.logger.error("Results file %s was not found.", results_file) return None
[docs] def write_results(self, df, ts, n): """ Write every data of variables in self.var_list in an DataFrame DataFrame will be updated every time step Args: df: DataFrame which is initialised as an empty DataFrame with columns according to self.var_list ts: time step n: number of time steps during prediction horizon Returns: DataFrame with results of every variable in self.var_list """ results = [] now = self.env.now for name in self.var_list: # Use the power variables averaged for each timestep, not the collocation values if name == glbs.POWER_ALIAS_BASE: values = self.data.power_profile_base elif name == glbs.POWER_ALIAS_NEG: values = self.data.power_profile_flex_neg elif name == glbs.POWER_ALIAS_POS: values = self.data.power_profile_flex_pos elif name == glbs.STORED_ENERGY_ALIAS_BASE: values = self.data.stored_energy_profile_base elif name == glbs.STORED_ENERGY_ALIAS_NEG: values = self.data.stored_energy_profile_flex_neg elif name == glbs.STORED_ENERGY_ALIAS_POS: values = self.data.stored_energy_profile_flex_pos elif name == self.config.price_variable: values = self.data.electricity_price_series else: values = self.get(name).value if isinstance(values, pd.Series): traj = values.reindex(np.arange(0, n * ts, ts)) else: traj = pd.Series(values).reindex(np.arange(0, n * ts, ts)) results.append(traj) if not now % ts: self.time.append(now) new_df = pd.DataFrame(results).T new_df.columns = self.var_list # Rename time_step variable column new_df.rename(columns={glbs.TIME_STEP: f"{glbs.TIME_STEP}_mpc"}, inplace=True) new_df.index.direction = "time" new_df[glbs.TIME_STEP] = now new_df.set_index([glbs.TIME_STEP, new_df.index], inplace=True) df = pd.concat([df, new_df]) # set the indices once again as concat cant handle indices properly indices = pd.MultiIndex.from_tuples(df.index, names=[glbs.TIME_STEP, "time"]) df.set_index(indices, inplace=True) # Drop column time_step and keep it as an index only if glbs.TIME_STEP in df.columns: df.drop(columns=[glbs.TIME_STEP], inplace=True) return df
[docs] def cleanup_results(self): results_file = self.config.results_file if not results_file: return os.remove(results_file)
[docs] def calc_and_send_offer(self): """ Calculate the flexibility KPIs for current predictions, send the flex offer and set the outputs, write and save the results. """ # Calculate the flexibility KPIs for current predictions self.data.calculate(enable_energy_costs_correction=self.config.correct_costs.enable_energy_costs_correction, calculate_flex_cost=self.config.calculate_costs.calculate_flex_costs) # Send flex offer self.send_flex_offer( name=glbs.FlexibilityOffer, base_power_profile=self.data.power_profile_base, pos_diff_profile=self.data.kpis_pos.power_flex_offer.value, pos_price=self.data.kpis_pos.costs.value, neg_diff_profile=self.data.kpis_neg.power_flex_offer.value, neg_price=self.data.kpis_neg.costs.value, ) # set outputs for kpi in self.data.get_kpis().values(): if kpi.get_kpi_identifier() not in [kpis_pos.power_flex_within_boundary.get_kpi_identifier(), kpis_neg.power_flex_within_boundary.get_kpi_identifier()]: for output in self.config.outputs: if output.name == kpi.get_kpi_identifier(): self.set(output.name, kpi.value) # write results self.df = self.write_results( df=self.df, ts=self.get(glbs.TIME_STEP).value, n=self.get(glbs.PREDICTION_HORIZON).value ) # save results if self.config.save_results: self.df.to_csv(self.config.results_file)
[docs] def send_flex_offer( self, name, base_power_profile: pd.Series, pos_diff_profile: pd.Series, pos_price: float, neg_diff_profile: pd.Series, neg_price: float, timestamp: float = None ): """ Send a flex offer as an agent Variable. The first offer is dismissed, since the different MPCs need one time step to fully initialize. Inputs: name: name of the agent variable indicator_data: the indicator data object timestamp: the time offer was generated """ if self.offer_count > 0: var = self._variables_dict[name] var.value = FlexOffer( base_power_profile=base_power_profile, pos_diff_profile=pos_diff_profile, pos_price=pos_price, neg_diff_profile=neg_diff_profile, neg_price=neg_price, ) if timestamp is None: timestamp = self.env.time var.timestamp = timestamp self.agent.data_broker.send_variable( variable=var.copy(update={"source": self.source}), copy=False, ) self.offer_count += 1
def _set_inputs_to_none(self): self.data.power_profile_base = None self.data.power_profile_flex_neg = None self.data.power_profile_flex_pos = None self.data.electricity_price_series = None self.data.stored_energy_profile_base = None self.data.stored_energy_profile_flex_neg = None self.data.stored_energy_profile_flex_pos = None
[docs] def check_power_end_deviation(self, tol: float): """ calculates the deviation of the final value of the power profiles and warn the user if it exceeds the tolerance """ logger = logging.getLogger(__name__) dev_pos = np.mean(self.data.power_profile_flex_pos.values[-4:] - self.data.power_profile_base.values[-4:]) dev_neg = np.mean(self.data.power_profile_flex_neg.values[-4:] - self.data.power_profile_base.values[-4:]) if abs(dev_pos) > tol: logger.warning(f"There is an average deviation of {dev_pos:.6f} kW between the final values of power profiles of positive shadow MPC and the baseline. Correction of energy costs might be necessary.") self.set(kpis_pos.power_flex_within_boundary.get_kpi_identifier(), False) else: self.set(kpis_pos.power_flex_within_boundary.get_kpi_identifier(), True) if abs(dev_neg) > tol: logger.warning(f"There is an average deviation of {dev_pos:.6f} kW between the final values of power profiles of negative shadow MPC and the baseline. Correction of energy costs might be necessary.") self.set(kpis_neg.power_flex_within_boundary.get_kpi_identifier(), False) else: self.set(kpis_neg.power_flex_within_boundary.get_kpi_identifier(), True)