Source code for agentlib_flexquant.modules.shadow_mpc

"""
Defines shadow MPC and MINLP-MPC for positive/negative flexibility quantification.
"""
from typing import Dict, Union

import os
import math
import numpy as np
import pandas as pd
from pydantic import Field
from typing import Dict, Union, Optional
from collections.abc import Iterable
from agentlib.core.datamodels import AgentVariable
from agentlib_mpc.modules import mpc_full, minlp_mpc
from agentlib_flexquant.utils.data_handling import fill_nans, MEAN
from agentlib_flexquant.data_structures.globals import (
    full_trajectory_prefix,
    full_trajectory_suffix,
    STORED_ENERGY_ALIAS_NEG,
    STORED_ENERGY_ALIAS_POS,
)


[docs]class FlexibilityShadowMPCConfig(mpc_full.MPCConfig): casadi_sim_time_step: int = Field( default=0, description="Time step for simulation with Casadi simulator. Value is read from " "FlexQuantConfig", ) power_variable_name: str = Field( default=None, description="Name of the power variable in the shadow mpc model." ) storage_variable_name: Optional[str] = Field( default=None, description="Name of the storage variable in the shadow mpc model." )
[docs]class FlexibilityShadowMPC(mpc_full.MPC): """Shadow MPC for calculating positive/negative flexibility offers.""" config: FlexibilityShadowMPCConfig def __init__(self, *args, **kwargs): # create instance variable self._full_controls: Dict[str, Union[AgentVariable, None]] = {} # initialize flex_results with None self.flex_results = None super().__init__(*args, **kwargs) # set up necessary components if simulation is enabled if self.config.casadi_sim_time_step > 0: # generate a separate flex_model for integration to ensure the model used in MPC # optimization remains unaffected self.flex_model = type(self.model)(dt=self.config.casadi_sim_time_step) # generate the filename for the simulation results self.res_file_flex = self.config.optimization_backend["results_file"].replace( "mpc", "mpc_sim" ) # clear the casadi simulator result at the first time step if already exists try: os.remove(self.res_file_flex) except: pass
[docs] def set_output(self, solution): """Takes the solution from optimization backend and sends it to AgentVariables.""" # Output must be defined in the config as "type"="pd.Series" if not self.config.set_outputs: return self.logger.info("Sending optimal output values to data_broker.") df = solution.df self.sim_flex_model(solution) if self.flex_results is not None: for output in self.var_ref.outputs: if output not in [ self.config.power_variable_name, self.config.storage_variable_name, ]: series = df.variable[output] self.set(output, series) # send the power and storage variable value from simulation results upsampled_output_power = self.flex_results[self.config.power_variable_name] self.set(self.config.power_variable_name, upsampled_output_power) if self.config.storage_variable_name is not None: upsampled_output_storage = self.flex_results[self.config.storage_variable_name] self.set(self.config.storage_variable_name, upsampled_output_storage.dropna()) else: for output in self.var_ref.outputs: series = df.variable[output] self.set(output, series)
[docs] def sim_flex_model(self, solution): """simulate the flex model over the preditcion horizon and save results""" # return if sim_time_step is not a positive integer and system is in provision if not (self.config.casadi_sim_time_step > 0 and not self.get("in_provision").value): return # read the defined simulation time step sim_time_step = self.config.casadi_sim_time_step mpc_time_step = self.config.time_step # set the horizon length and the number of simulation steps total_horizon_time = int(self.config.prediction_horizon * self.config.time_step) n_simulation_steps = math.ceil(total_horizon_time / sim_time_step) # read the current optimization result result_df = solution.df # initialize the flex sim results Dataframe self._initialize_flex_results( n_simulation_steps, total_horizon_time, sim_time_step, result_df ) # Update model parameters and initial states self._update_model_parameters() self._update_initial_states(result_df) # Run simulation self._run_simulation( n_simulation_steps, sim_time_step, mpc_time_step, result_df, total_horizon_time ) # set index of flex results to the same as mpc result store_results_df = self.flex_results.copy(deep=True) store_results_df.index = self.flex_results.index.tolist() # save results if not os.path.exists(self.res_file_flex): store_results_df.to_csv(self.res_file_flex) else: store_results_df.to_csv(self.res_file_flex, mode="a", header=False) # set the flex results format same as mpc result while updating Agentvariable self.flex_results.index = self.flex_results.index.get_level_values(1)
[docs] def register_callbacks(self): for control_var in self.config.controls: self.agent.data_broker.register_callback( name=f"{control_var.name+full_trajectory_suffix}", alias=f"{control_var.name+full_trajectory_suffix}", callback=self.calc_flex_callback, ) for input_var in self.config.inputs: adapted_name = input_var.name.replace(full_trajectory_suffix, "") if adapted_name in [control_var.name for control_var in self.config.controls]: self._full_controls[input_var.name] = input_var super().register_callbacks()
[docs] def calc_flex_callback(self, inp: AgentVariable, name: str): """Set the control trajectories before calculating the flexibility offer. self.model should account for flexibility in its cost function. """ # during provision dont calculate flex if self.get("in_provision").value: return # do not trigger callback on self set variables if self.agent.config.id == inp.source.agent_id: return # get the value of the input vals = inp.value if vals.isna().any(): vals = fill_nans(series=vals, method=MEAN) # add time shift env.now to the mpc prediction index if it starts at t=0 if vals.index[0] == 0: vals.index += self.env.time # update value in the mapping dictionary self._full_controls[name].value = vals # make sure all controls are set if all(x.value is not None for x in self._full_controls.values()): self.do_step() for _, control_var in self._full_controls.items(): control_var.value = None
[docs] def process(self): # the shadow mpc should only be run after the results of the baseline are sent yield self.env.event()
def _initialize_flex_results( self, n_simulation_steps, horizon_length, sim_time_step, result_df ): """Initialize the flex results dataframe with the correct dimension and index and fill with existing results from optimization""" # create MultiIndex for collocation points index_coll = pd.MultiIndex.from_arrays( [[self.env.now] * len(result_df.index), result_df.index], names=["time_step", "time"] # Match the names with multi_index but note they're reversed ) # create Multiindex for full simulation sample times index_full_sample = pd.MultiIndex.from_tuples( zip( [self.env.now] * (n_simulation_steps + 1), range(0, horizon_length + sim_time_step, sim_time_step), ), names=["time_step", "time"], ) # merge indexes new_index = index_coll.union(index_full_sample).sort_values() # initialize the flex results with correct dimension self.flex_results = pd.DataFrame(np.nan, index=new_index, columns=self.var_ref.outputs) # Get the optimization outputs and create a series for fixed optimization outputs with the # correct MultiIndex format opti_outputs = result_df.variable[self.config.power_variable_name] fixed_opti_output = pd.Series( opti_outputs.values, index=index_coll, ) # fill the output value at the time step where it already exists in optimization output for idx in fixed_opti_output.index: if idx in self.flex_results.index: self.flex_results.loc[idx, self.config.power_variable_name] = fixed_opti_output[idx] def _update_model_parameters(self): """update the value of module parameters with value from config, since creating a model just reads the value in the model class but not the config """ for par in self.config.parameters: self.flex_model.set(par.name, par.value) def _update_initial_states(self, result_df): """set the initial value of states""" # get state values from the mpc optimization result state_values = result_df.variable[self.var_ref.states] # update state values with last measurement for state, value in zip(self.var_ref.states, state_values.iloc[0]): self.flex_model.set(state, value) def _run_simulation( self, n_simulation_steps, sim_time_step, mpc_time_step, result_df, total_horizon_time ): """simulate with flex model over the prediction horizon""" # get control and input values from the mpc optimization result control_values = result_df.variable[self.var_ref.controls].dropna() input_values = result_df.parameter[self.var_ref.inputs].dropna() # Get the simulation time step index sim_time_index = np.arange(0, (n_simulation_steps + 1) * sim_time_step, sim_time_step) # Reindex the controls and inputs to sim_time_index control_values_full = control_values.copy().reindex(sim_time_index, method="ffill") input_values_full = input_values.copy().reindex(sim_time_index, method="nearest") for i in range(0, n_simulation_steps): current_sim_time = i * sim_time_step # Apply control and input values from the appropriate MPC step for control, value in zip( self.var_ref.controls, control_values_full.loc[current_sim_time] ): self.flex_model.set(control, value) for input_var, value in zip( self.var_ref.inputs, input_values_full.loc[current_sim_time] ): # change the type of iterable input, since casadi model can't deal with iterable if issubclass(eval(self.flex_model.get(input_var).type), Iterable): self.flex_model.get(input_var).type = type(value).__name__ self.flex_model.set(input_var, value) # do integration # reduce the simulation time step so that the total horizon time will not be exceeded if current_sim_time + sim_time_step <= total_horizon_time: t_sample = sim_time_step else: t_sample = total_horizon_time - current_sim_time self.flex_model.do_step(t_start=0, t_sample=t_sample) # save output for output in self.var_ref.outputs: self.flex_results.loc[ (self.env.now, current_sim_time + t_sample), output ] = self.flex_model.get_output(output).value
[docs]class FlexibilityShadowMINLPMPCConfig(minlp_mpc.MINLPMPCConfig): casadi_sim_time_step: int = Field( default=0, description="Time step for simulation with Casadi simulator. Value is read from " "FlexQuantConfig", ) power_variable_name: str = Field( default=None, description="Name of the power variable in the shadow mpc model." ) storage_variable_name: Optional[str] = Field( default=None, description="Name of the storage variable in the shadow mpc model." )
[docs]class FlexibilityShadowMINLPMPC(minlp_mpc.MINLPMPC): """Shadow MINLP-MPC for calculating positive/negatives flexibility offers.""" config: FlexibilityShadowMINLPMPCConfig def __init__(self, *args, **kwargs): # create instance variable self._full_controls: Dict[str, Union[AgentVariable, None]] = {} # initialize flex_results with None self.flex_results = None super().__init__(*args, **kwargs) # set up necessary components if simulation is enabled if self.config.casadi_sim_time_step > 0: # generate a separate flex_model for integration to ensure the model used in MPC # optimization remains unaffected self.flex_model = type(self.model)(dt=self.config.casadi_sim_time_step) # generate the filename for the simulation results self.res_file_flex = self.config.optimization_backend["results_file"].replace( "mpc", "mpc_sim" ) # clear the casadi simulator result at the first time step if already exists try: os.remove(self.res_file_flex) except: pass
[docs] def register_callbacks(self): for control_var in self.config.controls + self.config.binary_controls: self.agent.data_broker.register_callback( name=f"{control_var.name}{full_trajectory_suffix}", alias=f"{control_var.name}{full_trajectory_suffix}", callback=self.calc_flex_callback, ) for input_var in self.config.inputs: adapted_name = input_var.name.replace(full_trajectory_suffix, "") if adapted_name in [ control_var.name for control_var in self.config.controls + self.config.binary_controls ]: self._full_controls[input_var.name] = input_var super().register_callbacks()
[docs] def calc_flex_callback(self, inp: AgentVariable, name: str): """Set the control trajectories before calculating the flexibility offer. self.model should account for flexibility in its cost function """ # during provision dont calculate flex if self.get("in_provision").value: return # do not trigger callback on self set variables if self.agent.config.id == inp.source.agent_id: return # get the value of the input vals = inp.value if vals.isna().any(): vals = fill_nans(series=vals, method=MEAN) # add time shift env.now to the mpc prediction index if it starts at t=0 if vals.index[0] == 0: vals.index += self.env.time # update value in the mapping dictionary self._full_controls[name].value = vals # update the value of the variable in the model if we want to limit the binary control in # the market time during optimization self.model.set(name, vals) # make sure all controls are set if all(x.value is not None for x in self._full_controls.values()): self.do_step() for _, control_var in self._full_controls.items(): control_var.value = None
[docs] def process(self): # the shadow mpc should only be run after the results of the baseline are sent yield self.env.event()
[docs] def set_output(self, solution): """Takes the solution from optimization backend and sends it to AgentVariables.""" # Output must be defined in the config as "type"="pd.Series" if not self.config.set_outputs: return self.logger.info("Sending optimal output values to data_broker.") # simulate with the casadi simulator self.sim_flex_model(solution) df = solution.df if self.flex_results is not None: for output in self.var_ref.outputs: if output not in [ self.config.power_variable_name, self.config.storage_variable_name, ]: series = df.variable[output] self.set(output, series) # send the power and storage variable value from simulation results upsampled_output_power = self.flex_results[self.config.power_variable_name] self.set(self.config.power_variable_name, upsampled_output_power) if self.config.storage_variable_name is not None: upsampled_output_storage = self.flex_results[self.config.storage_variable_name] self.set(self.config.storage_variable_name, upsampled_output_storage.dropna()) else: for output in self.var_ref.outputs: series = df.variable[output] self.set(output, series)
[docs] def sim_flex_model(self, solution): """simulate the flex model over the preditcion horizon and save results""" # return if sim_time_step is not a positive integer and system is in provision if not (self.config.casadi_sim_time_step > 0 and not self.get("in_provision").value): return # read the defined simulation time step sim_time_step = self.config.casadi_sim_time_step mpc_time_step = self.config.time_step # set the horizon length and the number of simulation steps total_horizon_time = int(self.config.prediction_horizon * self.config.time_step) n_simulation_steps = math.ceil(total_horizon_time / sim_time_step) # read the current optimization result result_df = solution.df # initialize the flex sim results Dataframe self._initialize_flex_results( n_simulation_steps, total_horizon_time, sim_time_step, result_df ) # Update model parameters and initial states self._update_model_parameters() self._update_initial_states(result_df) # Run simulation self._run_simulation( n_simulation_steps, sim_time_step, mpc_time_step, result_df, total_horizon_time ) # set index of flex results to the same as mpc result store_results_df = self.flex_results.copy(deep=True) store_results_df.index = self.flex_results.index.tolist() # save results if not os.path.exists(self.res_file_flex): store_results_df.to_csv(self.res_file_flex) else: store_results_df.to_csv(self.res_file_flex, mode="a", header=False) # set the flex results format same as mpc result while updating Agentvariable self.flex_results.index = self.flex_results.index.get_level_values(1)
def _initialize_flex_results( self, n_simulation_steps, horizon_length, sim_time_step, result_df ): """Initialize the flex results dataframe with the correct dimension and index and fill with existing results from optimization""" # create MultiIndex for collocation points index_coll = pd.MultiIndex.from_arrays( [[self.env.now] * len(result_df.index), result_df.index], names=["time_step", "time"] # Match the names with multi_index but note they're reversed ) # create Multiindex for full simulation sample times index_full_sample = pd.MultiIndex.from_tuples( zip( [self.env.now] * (n_simulation_steps + 1), range(0, horizon_length + sim_time_step, sim_time_step), ), names=["time_step", "time"], ) # merge indexes new_index = index_coll.union(index_full_sample).sort_values() # initialize the flex results with correct dimension self.flex_results = pd.DataFrame(np.nan, index=new_index, columns=self.var_ref.outputs) # Get the optimization outputs and create a series for fixed optimization outputs with the # correct MultiIndex format opti_outputs = result_df.variable[self.config.power_variable_name] fixed_opti_output = pd.Series( opti_outputs.values, index=index_coll, ) # fill the output value at the time step where it already exists in optimization output for idx in fixed_opti_output.index: if idx in self.flex_results.index: self.flex_results.loc[idx, self.config.power_variable_name] = fixed_opti_output[idx] def _update_model_parameters(self): """update the value of module parameters with value from config, since creating a model just reads the value in the model class but not the config """ for par in self.config.parameters: self.flex_model.set(par.name, par.value) def _update_initial_states(self, result_df): """set the initial value of states""" # get state values from the mpc optimization result state_values = result_df.variable[self.var_ref.states] # update state values with last measurement for state, value in zip(self.var_ref.states, state_values.iloc[0]): self.flex_model.set(state, value) def _run_simulation( self, n_simulation_steps, sim_time_step, mpc_time_step, result_df, total_horizon_time ): """simulate with flex model over the prediction horizon""" # get control and input values from the mpc optimization result control_values = result_df.variable[ [*self.var_ref.controls, *self.var_ref.binary_controls] ].dropna() input_values = result_df.parameter[self.var_ref.inputs].dropna() # Get the simulation time step index sim_time_index = np.arange(0, (n_simulation_steps + 1) * sim_time_step, sim_time_step) # Reindex the controls and inputs to sim_time_index control_values_full = control_values.copy().reindex(sim_time_index, method="ffill") input_values_full = input_values.copy().reindex(sim_time_index, method="nearest") for i in range(0, n_simulation_steps): current_sim_time = i * sim_time_step # Apply control and input values from the appropriate MPC step for control, value in zip( self.var_ref.controls, control_values_full.loc[current_sim_time, self.var_ref.controls], ): self.flex_model.set(control, value) for binary_control, value in zip( self.var_ref.binary_controls, control_values_full.loc[current_sim_time, self.var_ref.binary_controls], ): self.flex_model.set(binary_control, value) for input_var, value in zip( self.var_ref.inputs, input_values_full.loc[current_sim_time] ): # change the type of iterable input, since casadi model can't deal with iterable if issubclass(eval(self.flex_model.get(input_var).type), Iterable): self.flex_model.get(input_var).type = type(value).__name__ self.flex_model.set(input_var, value) # do integration # reduce the simulation time step so that the total horizon time will not be exceeded if current_sim_time + sim_time_step <= total_horizon_time: t_sample = sim_time_step else: t_sample = total_horizon_time - current_sim_time self.flex_model.do_step(t_start=0, t_sample=t_sample) # save output for output in self.var_ref.outputs: self.flex_results.loc[ (self.env.now, current_sim_time + t_sample), output ] = self.flex_model.get_output(output).value