Source code for agentlib_flexquant.utils.config_management

import importlib.util
import inspect
import math
import os
from abc import ABCMeta
from copy import deepcopy
from typing import TypeVar

from agentlib.core.agent import AgentConfig
from agentlib.core.module import BaseModuleConfig
from agentlib.modules import get_all_module_types

T = TypeVar("T", bound=BaseModuleConfig)

all_module_types = get_all_module_types(["agentlib_mpc", "agentlib_flexquant"])
# remove ML models, since import takes ages
all_module_types.pop("agentlib_mpc.ann_trainer")
all_module_types.pop("agentlib_mpc.gpr_trainer")
all_module_types.pop("agentlib_mpc.linreg_trainer")
all_module_types.pop("agentlib_mpc.ann_simulator")
all_module_types.pop("agentlib_mpc.set_point_generator")
# remove clone since not used
all_module_types.pop("clonemap")

# dictionary mapping the module name to the module config (ModelMetaclass)
MODULE_TYPE_DICT = {
    name: inspect.get_annotations(class_type.import_class())["config"]
    for name, class_type in all_module_types.items()
}
# dictionary mapping the module name to the module (ModuleImport)
MODULE_NAME_DICT = all_module_types

MPC_CONFIG_TYPE: str = "agentlib_mpc.mpc"
BASELINEMPC_CONFIG_TYPE: str = "agentlib_flexquant.baseline_mpc"
SHADOWMPC_CONFIG_TYPE: str = "agentlib_flexquant.shadow_mpc"
BASELINEMINLPMPC_CONFIG_TYPE: str = "agentlib_flexquant.baseline_minlp_mpc"
SHADOWMINLPMPC_CONFIG_TYPE: str = "agentlib_flexquant.shadow_minlp_mpc"
INDICATOR_CONFIG_TYPE: str = "agentlib_flexquant.flexibility_indicator"
MARKET_CONFIG_TYPE: str = "agentlib_flexquant.flexibility_market"
SIMULATOR_CONFIG_TYPE: str = "simulator"


[docs]def get_module_type_matching_dict(dictionary: dict) -> (dict, dict): """Create two dictionaries, which map the modules types of the agentlib_mpc modules to those of the flexquant modules. This is done by using the MODULE_NAME_DICT. """ # Create dictionaries to store keys grouped by values value_to_keys = {} for k, v in dictionary.items(): if k.startswith("agentlib_mpc."): if v not in value_to_keys: value_to_keys[v] = {"agentlib": [], "flex": []} value_to_keys[v]["agentlib"].append(k) if k.startswith("agentlib_flexquant."): # find the parent class of the module in the flexquant in agentlib_mpc for vv in value_to_keys: if vv.import_class() is v.import_class().__bases__[0]: value_to_keys[vv]["flex"].append(k) break # Create result dictionaries baseline_matches = {} shadow_matches = {} for v, keys in value_to_keys.items(): # Check if we have both agentlib and flexibility keys for this value if keys["agentlib"] and keys["flex"]: # Map each agentlib key to corresponding flexibility key for agent_key in keys["agentlib"]: for flex_key in keys["flex"]: if "baseline" in flex_key: baseline_matches[agent_key] = flex_key elif "shadow" in flex_key: shadow_matches[agent_key] = flex_key return baseline_matches, shadow_matches
BASELINE_MODULE_TYPE_DICT, SHADOW_MODULE_TYPE_DICT = get_module_type_matching_dict(MODULE_NAME_DICT)
[docs]def get_orig_module_type(config: AgentConfig) -> str: """Return the config type of the original MPC.""" for module in config.modules: if module["type"].startswith("agentlib_mpc"): return module["type"]
[docs]def get_module(config: AgentConfig, module_type: str) -> T: """Extracts a module from a config based on its name.""" for module in config.modules: if module["type"] == module_type: # deepcopy -> avoid changing the original config, when editing the module # deepcopy the args of the constructor instead of the module object, # because the simulator module exceeds the recursion limit config_id = deepcopy(config.id) mod = deepcopy(module) return MODULE_TYPE_DICT[mod["type"]](**mod, _agent_id=config_id) else: raise ModuleNotFoundError( f"Module type {module['type']} not found in " f"agentlib and its plug ins." )
[docs]def get_flex_mpc_module_config( agent_config: AgentConfig, module_config: BaseModuleConfig, module_type: str ): """Get a flexquant module config from an original agentlib module config.""" config_dict = module_config.model_dump() config_dict["type"] = module_type return MODULE_TYPE_DICT[module_type](**config_dict, _agent_id=agent_config.id)
[docs]def to_dict_and_remove_unnecessary_fields(module: BaseModuleConfig) -> dict: """Remove unnecessary fields from the module to keep the created json simple.""" excluded_fields = [ "rdf_class", "source", "type", "timestamp", "description", "unit", "clip", "shared", "interpolation_method", "allowed_values", ] def check_bounds(parameter): delete_list = excluded_fields.copy() if parameter.lb == -math.inf: delete_list.append("lb") if parameter.ub == math.inf: delete_list.append("ub") return delete_list parent_dict = module.model_dump(exclude_defaults=True) # update every variable with a dict excluding the defined fields if "parameters" in parent_dict: parent_dict["parameters"] = [ parameter.dict(exclude=check_bounds(parameter)) for parameter in module.parameters ] if "inputs" in parent_dict: parent_dict["inputs"] = [input.dict(exclude=check_bounds(input)) for input in module.inputs] if "outputs" in parent_dict: parent_dict["outputs"] = [ output.dict(exclude=check_bounds(output)) for output in module.outputs ] if "controls" in parent_dict: parent_dict["controls"] = [ control.dict(exclude=check_bounds(control)) for control in module.controls ] if "binary_controls" in parent_dict: parent_dict["binary_controls"] = [ binary_control.dict(exclude=check_bounds(binary_control)) for binary_control in module.binary_controls ] if "states" in parent_dict: parent_dict["states"] = [state.dict(exclude=check_bounds(state)) for state in module.states] if "full_controls" in parent_dict: parent_dict["full_controls"] = [ full_control.dict( exclude=(lambda ex: ex.remove("shared") or ex)(check_bounds(full_control)) ) for full_control in module.full_controls ] return parent_dict
[docs]def get_class_from_file(file_path: str, class_name: str) -> ABCMeta: # Get the absolute path if needed abs_path = os.path.abspath(file_path) # Get the module name from the file path module_name = os.path.splitext(os.path.basename(file_path))[0] # Load the module specification spec = importlib.util.spec_from_file_location(module_name, abs_path) # Create the module module = importlib.util.module_from_spec(spec) # Execute the module spec.loader.exec_module(module) # Get the class from the module target_class = getattr(module, class_name) return target_class