"""asd"""
from teaser.logic.buildingobjects.buildingphysics.buildingelement \
import BuildingElement
from teaser.logic.buildingobjects.buildingphysics.layer import Layer
from teaser.logic.buildingobjects.buildingphysics.material import Material
import numpy as np
import warnings
[docs]
class Wall(BuildingElement):
"""Wall class
This class holds functions and information for walls. It inherits for
BuildingElement() and is a base class for all inner and outer walls.
Parameters
----------
parent : ThermalZone()
The parent class of this object, the ThermalZone the BE belongs to.
Allows for better control of hierarchical structures.
Default is None.
Attributes
----------
internal_id : float
Random id for the distinction between different elements.
name : str
Individual name
construction_data : str
Type of construction (e.g. "heavy" or "light"). Needed for
distinction between different constructions types in the same
building age period.
year_of_retrofit : int
Year of last retrofit
year_of_construction : int
Year of first construction
building_age_group : list
Determines the building age period that this building
element belongs to [begin, end], e.g. [1984, 1994]
area : float [m2]
Area of building element
tilt : float [degree]
Tilt against horizontal
orientation : float [degree]
Azimuth direction of building element (0 : north, 90: east, 180: south,
270: west)
inner_convection : float [W/(m2*K)]
Constant heat transfer coefficient of convection inner side (facing
the zone)
inner_radiation : float [W/(m2*K)]
Constant heat transfer coefficient of radiation inner side (facing
the zone)
outer_convection : float [W/(m2*K)]
Constant heat transfer coefficient of convection outer side (facing
the ambient or adjacent zone). Currently for all InnerWalls and
GroundFloors this value is set to 0.0
outer_radiation : float [W/(m2*K)]
Constant heat transfer coefficient of radiation outer side (facing
the ambient or adjacent zone). Currently for all InnerWalls and
GroundFloors this value is set to 0.0
layer : list
List of all layers of a building element (to be filled with Layer
objects). Use element.layer = None to delete all layers of the building
element
other_side : ThermalZone()
the thermal zone on the other side of the building element (only for
interzonal elements)
interzonal_type_material : str
one of (None (default), 'inner', 'outer_ordered', 'outer_reversed')
describes as which kind of element the element is treated when loading
type elements. Caution: Make sure that the complimentary element of
the other zone is also changed accordingly if this is adapted manually
None: treatment based on project.method_interzonal_export_enrichment
'inner': InterzonalWall treated as InnerWall,
InterzonalFloor treated as Floor,
InterzonalCeiling treated as Ceiling
'outer_ordered': InterzonalWall treated as Wall,
InterzonalFloor treated as GroundFloor,
InterzonalCeiling treated as Rooftop
'outer_reversed': InterzonalWall treated as Wall,
InterzonalFloor treated as Rooftop,
InterzonalCeiling treated as GroundFloor, but with
reversed layers, resulting in the reversed
sequence of layers as for the complimentary
element declared as 'outer_ordered'
interzonal_type_export : str
one of (None (default), 'inner', 'outer_ordered', 'outer_reversed')
describes as which kind of element the element is treated when exporting
to Modelica. Caution: Make sure that the complimentary element of
the other zone is also changed accordingly if this is adapted manually
'inner': element will be lumped with InnerWall. No heat flow to the
zone on the other side will be modelled.
'outer_ordered': element will be lumped with OuterWall (OneElement
to FourElement export) or treated as border to an
adjacent zone (FiveElement export). Borders to the
same adjacent zone will be lumped.
'outer_reversed': like 'outer_ordered', but the lumping follows
VDI 6007-1 in reversed order, resulting in the
reversed order of resistances and capacitors as
for the complimentary element declared as
'outer_ordered'
Calculated Attributes
r1 : float [K/W]
equivalent resistance R1 of the analogous model given in VDI 6007
r2 : float [K/W]
equivalent resistance R2 of the analogous model given in VDI 6007
r3 : float [K/W]
equivalent resistance R3 of the analogous model given in VDI 6007
c1 : float [J/K]
equivalent capacity C1 of the analogous model given in VDI 6007
c2 : float [J/K]
equivalent capacity C2 of the analogous model given in VDI 6007
c1_korr : float [J/K]
corrected capacity C1,korr for building elements in the case of
asymmetrical thermal load given in VDI 6007
calc_u: Required area-specific U-value in retrofit cases [W/K]
ua_value : float [W/K]
UA-Value of building element (Area times U-Value)
r_inner_conv : float [K/W]
Convective resistance of building element on inner side (facing the
zone)
r_inner_rad : float [K/W]
Radiative resistance of building element on inner side (facing the
zone)
r_inner_conv : float [K/W]
Combined convective and radiative resistance of building element on
inner side (facing the zone)
r_outer_conv : float [K/W]
Convective resistance of building element on outer side (facing
the ambient or adjacent zone). Currently for all InnerWalls and
GroundFloors this value is set to 0.0
r_outer_rad : float [K/W]
Radiative resistance of building element on outer side (facing
the ambient or adjacent zone). Currently for all InnerWalls and
GroundFloors this value is set to 0.0
r_outer_comb : float [K/W]
Combined convective and radiative resistance of building element on
outer side (facing the ambient or adjacent zone). Currently for all
InnerWalls and GroundFloors this value is set to 0.0
wf_out : float
Weightfactor of building element ua_value/ua_value_zone
"""
def __init__(self, parent=None, other_side=None):
"""Constructor of Wall
"""
self.other_side = other_side
self.interzonal_type_material = None
self.interzonal_type_export = None
super(Wall, self).__init__(parent)
[docs]
def calc_equivalent_res(self, t_bt=7):
"""Equivalent resistance according to VDI 6007.
Calculates the equivalent resistance and capacity of a wall according
to VDI 6007 guideline. (Analogous model).
Parameters
----------
t_bt : int
Time constant according to VDI 6007 (default t_bt = 7)
"""
nr_of_layer, density, thermal_conduc, heat_capac, thickness = \
self.gather_element_properties()
reverse_layers = self.interzonal_type_export == 'outer_reversed'
if reverse_layers:
density = density[-1::-1]
thermal_conduc = thermal_conduc[-1::-1]
heat_capac = heat_capac[-1::-1]
thickness = thickness[-1::-1]
omega = 2 * np.pi / (86400 * t_bt)
r_layer = thickness / thermal_conduc
c_layer = heat_capac * density * thickness * 1000
re11 = np.cosh(np.sqrt(0.5 * omega * r_layer * c_layer)) * \
np.cos(np.sqrt(0.5 * omega * r_layer * c_layer))
im11 = np.sinh(np.sqrt(0.5 * omega * r_layer * c_layer)) * \
np.sin(np.sqrt(0.5 * omega * r_layer * c_layer))
re12 = r_layer * np.sqrt(1 / (2 * omega * r_layer * c_layer)) * \
(np.cosh(np.sqrt(0.5 * omega * r_layer * c_layer)) *
np.sin(np.sqrt(0.5 * omega * r_layer * c_layer)) +
np.sinh(np.sqrt(0.5 * omega * r_layer * c_layer)) *
np.cos(np.sqrt(0.5 * omega * r_layer * c_layer)))
im12 = r_layer * np.sqrt(1 / (2 * omega * r_layer * c_layer)) * \
(np.cosh(np.sqrt(0.5 * omega * r_layer * c_layer)) *
np.sin(np.sqrt(0.5 * omega * r_layer * c_layer)) -
np.sinh(np.sqrt(0.5 * omega * r_layer * c_layer)) *
np.cos(np.sqrt(0.5 * omega * r_layer * c_layer)))
re21 = (-1 / r_layer) * (np.sqrt(0.5 * omega * r_layer * c_layer)) * \
(np.cosh(np.sqrt(0.5 * omega * r_layer * c_layer)) *
np.sin(np.sqrt(0.5 * omega * r_layer * c_layer)) -
np.sinh(np.sqrt(0.5 * omega * r_layer * c_layer)) *
np.cos(np.sqrt(0.5 * omega * r_layer * c_layer)))
im21 = (1 / r_layer) * (np.sqrt(0.5 * omega * r_layer * c_layer)) * \
(np.cosh(np.sqrt(0.5 * omega * r_layer * c_layer)) *
np.sin(np.sqrt(0.5 * omega * r_layer * c_layer)) +
np.sinh(np.sqrt(0.5 * omega * r_layer * c_layer)) *
np.cos(np.sqrt(0.5 * omega * r_layer * c_layer)))
re22 = re11
im22 = im11
# -----setting up the matrix for each layer
a_layer = np.zeros((nr_of_layer, 4, 4))
for i, r in enumerate(re11):
a_layer[i][0][0] = r
a_layer[i][0][1] = im11[i]
a_layer[i][0][2] = re12[i]
a_layer[i][0][3] = im12[i]
a_layer[i][1][0] = -im11[i]
a_layer[i][1][1] = re11[i]
a_layer[i][1][2] = -im12[i]
a_layer[i][1][3] = re12[i]
a_layer[i][2][0] = re21[i]
a_layer[i][2][1] = im21[i]
a_layer[i][2][2] = re22[i]
a_layer[i][2][3] = im22[i]
a_layer[i][3][0] = -im21[i]
a_layer[i][3][1] = re21[i]
a_layer[i][3][2] = -im22[i]
a_layer[i][3][3] = re22[i]
# -----multiplication of the matrix
new_mat = np.diag(np.ones(4))
for count_layer in a_layer:
new_mat = np.dot(new_mat, count_layer)
# calculation of equivalent Resistance and capacities of each element
self.r1 = (1 / self.area) * ((new_mat[3][3] - 1) *
new_mat[0][2] + new_mat[2][3] *
new_mat[0][3]) / \
((new_mat[3][3] - 1) ** 2 + new_mat[2][3] ** 2)
self.r2 = (1 / self.area) * ((new_mat[0][0] - 1) *
new_mat[0][2] + new_mat[0][1] *
new_mat[0][3]) / \
((new_mat[0][0] - 1) ** 2 + new_mat[0][1] ** 2)
self.c1 = self.area * ((new_mat[3][3] - 1) ** 2 +
(new_mat[2][3]) ** 2) / \
(omega * (new_mat[0][2] * new_mat[2][3] -
(new_mat[3][3] - 1) * new_mat[0][3]))
self.c2 = self.area * ((new_mat[0][0] - 1) ** 2 +
(new_mat[0][1]) ** 2) / (
omega * (new_mat[0][2] *
new_mat[0][1] -
(new_mat[0][0] - 1) *
new_mat[0][3]))
self.r3 = (1 / self.area) * (np.sum(r_layer)) - self.r1 - self.r2
r_wall = self.r1 + self.r2 + self.r3
self.c1_korr = (1 / (omega * self.r1)) \
* ((r_wall * self.area
- new_mat[0][2] * new_mat[3][3]
- new_mat[0][3] * new_mat[2][3])
/ (new_mat[3][3] * new_mat[0][3]
- new_mat[0][2] * new_mat[2][3]))
if reverse_layers:
former_r2 = self.r2
self.r2 = self.r1
self.r1 = former_r2
former_c2 = self.c2
self.c2 = self.c1
self.c1 = former_c2
if type(self).__name__ == "OuterWall" \
or type(self).__name__ == "Rooftop" \
or type(self).__name__ == "GroundFloor":
self.c1 = self.c1_korr
[docs]
def insulate_wall(
self,
material=None,
thickness=None,
add_at_position=None,
add_plaster_material=None,
add_plaster_thickness=None):
"""Retrofit the walls with an additional insulation layer
Adds an additional layer on the wall
Parameters
----------
material : string
Type of material, that is used for insulation, default = EPS035
thickness : float
thickness of the insulation layer, default = None
add_at_position : int
position at which to insert the insulation layer.
0 inside, None (default) or -1 outside/other side
add_plaster_material : int
material of plaster to add, default = None. Is only applied if
add_plaster_thickness is not None
can only be applied if add_at_position is 0 or None
add_plaster_thickness : float
thickness of the plaster layer, default = None
Returns
-------
insulation_index : int
index of the insulation layer in the layer list
"""
if material is None:
material = "EPS035"
else:
pass
if add_at_position == -1:
add_at_position = None
ext_layer = Layer(self, parent_position=add_at_position)
new_material = Material(ext_layer)
new_material.load_material_template(
material,
data_class=self.parent.parent.parent.data)
if thickness is None:
pass
else:
ext_layer.thickness = thickness
ext_layer.material = new_material
insulation_index = len(self.layer) - 1 if add_at_position is None \
else add_at_position
if add_plaster_thickness is not None:
ass_error_1 = "If plaster is added, insulation must be applied at" \
" inside or outside"
assert add_at_position is None or add_at_position == 0, ass_error_1
if add_plaster_material is None:
add_plaster_material = 'insulating_plaster'
plaster_layer = Layer(self, parent_position=add_at_position)
plaster_material = Material(plaster_layer)
plaster_material.load_material_template(
add_plaster_material,
data_class=self.parent.parent.parent.data)
plaster_layer.thickness = add_plaster_thickness
if add_at_position == 0:
insulation_index = 1
return insulation_index
[docs]
def retrofit_wall(self,
year_of_retrofit,
material=None,
add_at_position=None):
"""Retrofits wall to German refurbishment standards.
This function adds an additional layer of insulation and sets the
thickness of the layer according to the retrofit standard in the
year of refurbishment. Refurbishment year must be newer then 1977.
Refurbishment layers are added on the unheated/outside of outer walls,
rooftops, ground floors and interzonal elements between heated and
unheated zones if not otherwise specified.
Note: To Calculate thickness and U-Value, the standard TEASER
coefficients for outer and inner heat transfer are used.
The used Standards are namely the Waermeschutzverordnung (WSVO) and
Energieeinsparverordnung (EnEv)
Parameters
----------
material : string
Type of material, that is used for insulation
year_of_retrofit : int
Year of the retrofit of the wall/building
add_at_position : int
position at which to insert the insulation layer.
0 inside, None (default) or -1 outside/other side
"""
raise NotImplementedError("Please call this method only against "
"OuterWall, Rooftop, GroundFloor, and "
"interzonal elements")
[docs]
def initialize_retrofit(self,
material,
year_of_retrofit,
add_at_position=None):
"""Checks the retrofit inputs and sets material and year of retrofit
if needed."""
self.set_calc_default()
self.calc_ua_value()
if material is None:
material = "EPS_perimeter_insulation_top_layer"
else:
pass
if year_of_retrofit < 1977:
year_of_retrofit = 1977
warnings.warn("You are using a year of retrofit not supported\
by teaser. We will change your year of retrofit to 1977\
for the calculation. Be careful!")
if add_at_position is None:
ins_layer_index = -1 # default: outside
else:
ins_layer_index = add_at_position
return material, year_of_retrofit, ins_layer_index
[docs]
def set_insulation(self,
material,
calc_u,
year_of_retrofit,
ins_layer_index=-1):
"""Sets the correct insulation thickness based on the given u-value"""
if calc_u:
if self.u_value <= calc_u:
warnings.warn(
f'No retrofit needed for {self.name} as u value '
f'is already lower than needed.')
else:
ins_layer_index = self.insulate_wall(
material,
add_at_position=ins_layer_index
)
d_ins = self.calc_ins_layer_thickness(
calc_u,
ins_layer_index
)
self.layer[ins_layer_index].thickness = d_ins
self.layer[ins_layer_index].id = len(self.layer)
else:
warnings.warn(
f'No fitting retrofit type found for {year_of_retrofit}')
[docs]
def calc_ins_layer_thickness(self, calc_u, ins_layer_index):
"""Calculates the thickness of the fresh insulated layer from
retrofit"""
r_conduc_rem = 0
for layer_index, count_layer in enumerate(self.layer):
if layer_index == ins_layer_index:
pass
else:
r_conduc_rem += (count_layer.thickness /
count_layer.material.thermal_conduc)
lambda_ins = self.layer[ins_layer_index].material.thermal_conduc
d_ins = lambda_ins * (1 / calc_u - self.r_outer_comb * self.area -
self.r_inner_comb * self.area - r_conduc_rem)
return d_ins
def _interzonal_type_standard_value(self, method):
"""return the standard value for the treatment of interzonal elements
Refer to the documentation of project for details
Parameters
----------
method : str
a valid value of project.method_interzonal_material_enrichment or
project.method_interzonal_export
Returns
-------
value : str
'inner', 'outer_ordered', or 'outer_reversed'
"""
this_use = self.parent.use_conditions
try:
other_use = self.other_side.use_conditions
except AttributeError:
other_use = None
if other_use is None:
if not this_use.with_heating and not this_use.with_cooling:
value = 'inner'
else:
value = 'outer_ordered'
elif method == 'heating_difference':
if ((other_use.with_heating and this_use.with_heating)
or (not other_use.with_heating
and not this_use.with_heating)):
value = 'inner'
elif this_use.with_heating is True:
value = 'outer_ordered'
else: # this_use.with_heating is False:
value = 'outer_reversed'
elif (method == 'heating_cooling_difference'
or method.startswith('setpoint_difference_')):
# first decision: different heating conditions?
if this_use.with_heating and not other_use.with_heating:
value = 'outer_ordered'
elif not this_use.with_heating and other_use.with_heating:
value = 'outer_reversed'
# second decision: different cooling conditions?
elif this_use.with_cooling and not other_use.with_cooling:
value = 'outer_ordered'
elif not this_use.with_cooling and other_use.with_cooling:
value = 'outer_reversed'
elif not method.startswith('setpoint_difference_'):
value = 'inner'
else:
# third decision: compare setpoints
max_setpoint_diff = float(
method.lstrip('setpoint_difference_')
)
setpoint_diff_heating = np.subtract(
this_use.schedules["heating_profile"],
other_use.schedules["heating_profile"]
)
this_warmer = any(setpoint_diff_heating > max_setpoint_diff)
other_warmer = any(setpoint_diff_heating < -max_setpoint_diff)
setpoint_diff_cooling = np.subtract(
this_use.schedules["cooling_profile"],
other_use.schedules["cooling_profile"]
)
this_colder = any(setpoint_diff_cooling < -max_setpoint_diff)
other_colder = any(setpoint_diff_cooling > max_setpoint_diff)
if this_warmer and not other_warmer:
value = 'outer_ordered'
elif other_warmer and not this_warmer:
value = 'outer_reversed'
elif this_colder and not other_colder:
value = 'outer_ordered'
elif other_colder and not this_colder:
value = 'outer_reversed'
else:
value = 'inner'
return value
@property
def other_side(self):
return self._other_side
@other_side.setter
def other_side(self, value):
if value is not None:
ass_error_1 = "Other side has to be an instance of ThermalZone()"
assert type(value).__name__ == "ThermalZone", ass_error_1
ass_error_2 = "Other side can only be set for interzonal elements"
assert type(self).__name__ in ("InterzonalWall", "InterzonalFloor",
"InterzonalCeiling"), ass_error_2
self._other_side = value
else:
self._other_side = None
@property
def interzonal_type_material(self):
if self._interzonal_type_material is not None:
return self._interzonal_type_material
else:
return self._interzonal_type_standard_value(
method=self.parent.parent.parent.method_interzonal_material_enrichment
)
@interzonal_type_material.setter
def interzonal_type_material(self, value):
allowed_values = (None, 'inner', 'outer_ordered', 'outer_reversed')
assert value in allowed_values
self._interzonal_type_material = value
@property
def interzonal_type_export(self):
if self._interzonal_type_export is not None:
return self._interzonal_type_export
else:
return self._interzonal_type_standard_value(
method=self.parent.parent.parent.method_interzonal_export
)
return value
@interzonal_type_export.setter
def interzonal_type_export(self, value):
allowed_values = (None, 'inner', 'outer_ordered', 'outer_reversed')
assert value in allowed_values
self._interzonal_type_export = value