Source code for teaser.logic.buildingobjects.buildingphysics.wall

"""asd"""
from teaser.logic.buildingobjects.buildingphysics.buildingelement \
    import BuildingElement
from teaser.logic.buildingobjects.buildingphysics.layer import Layer
from teaser.logic.buildingobjects.buildingphysics.material import Material
import numpy as np
import warnings


[docs] class Wall(BuildingElement): """Wall class This class holds functions and information for walls. It inherits for BuildingElement() and is a base class for all inner and outer walls. Parameters ---------- parent : ThermalZone() The parent class of this object, the ThermalZone the BE belongs to. Allows for better control of hierarchical structures. Default is None. Attributes ---------- internal_id : float Random id for the distinction between different elements. name : str Individual name construction_data : str Type of construction (e.g. "heavy" or "light"). Needed for distinction between different constructions types in the same building age period. year_of_retrofit : int Year of last retrofit year_of_construction : int Year of first construction building_age_group : list Determines the building age period that this building element belongs to [begin, end], e.g. [1984, 1994] area : float [m2] Area of building element tilt : float [degree] Tilt against horizontal orientation : float [degree] Azimuth direction of building element (0 : north, 90: east, 180: south, 270: west) inner_convection : float [W/(m2*K)] Constant heat transfer coefficient of convection inner side (facing the zone) inner_radiation : float [W/(m2*K)] Constant heat transfer coefficient of radiation inner side (facing the zone) outer_convection : float [W/(m2*K)] Constant heat transfer coefficient of convection outer side (facing the ambient or adjacent zone). Currently for all InnerWalls and GroundFloors this value is set to 0.0 outer_radiation : float [W/(m2*K)] Constant heat transfer coefficient of radiation outer side (facing the ambient or adjacent zone). Currently for all InnerWalls and GroundFloors this value is set to 0.0 layer : list List of all layers of a building element (to be filled with Layer objects). Use element.layer = None to delete all layers of the building element Calculated Attributes r1 : float [K/W] equivalent resistance R1 of the analogous model given in VDI 6007 r2 : float [K/W] equivalent resistance R2 of the analogous model given in VDI 6007 r3 : float [K/W] equivalent resistance R3 of the analogous model given in VDI 6007 c1 : float [J/K] equivalent capacity C1 of the analogous model given in VDI 6007 c2 : float [J/K] equivalent capacity C2 of the analogous model given in VDI 6007 c1_korr : float [J/K] corrected capacity C1,korr for building elements in the case of asymmetrical thermal load given in VDI 6007 calc_u: Required area-specific U-value in retrofit cases [W/K] ua_value : float [W/K] UA-Value of building element (Area times U-Value) r_inner_conv : float [K/W] Convective resistance of building element on inner side (facing the zone) r_inner_rad : float [K/W] Radiative resistance of building element on inner side (facing the zone) r_inner_conv : float [K/W] Combined convective and radiative resistance of building element on inner side (facing the zone) r_outer_conv : float [K/W] Convective resistance of building element on outer side (facing the ambient or adjacent zone). Currently for all InnerWalls and GroundFloors this value is set to 0.0 r_outer_rad : float [K/W] Radiative resistance of building element on outer side (facing the ambient or adjacent zone). Currently for all InnerWalls and GroundFloors this value is set to 0.0 r_outer_conv : float [K/W] Combined convective and radiative resistance of building element on outer side (facing the ambient or adjacent zone). Currently for all InnerWalls and GroundFloors this value is set to 0.0 wf_out : float Weightfactor of building element ua_value/ua_value_zone """ def __init__(self, parent=None): """Constructor of Wall """ super(Wall, self).__init__(parent)
[docs] def calc_equivalent_res(self, t_bt=7): """Equivalent resistance according to VDI 6007. Calculates the equivalent resistance and capacity of a wall according to VDI 6007 guideline. (Analogous model). Parameters ---------- t_bt : int Time constant according to VDI 6007 (default t_bt = 7) """ nr_of_layer, density, thermal_conduc, heat_capac, thickness = \ self.gather_element_properties() omega = 2 * np.pi / (86400 * t_bt) r_layer = thickness / thermal_conduc c_layer = heat_capac * density * thickness * 1000 re11 = np.cosh(np.sqrt(0.5 * omega * r_layer * c_layer)) * \ np.cos(np.sqrt(0.5 * omega * r_layer * c_layer)) im11 = np.sinh(np.sqrt(0.5 * omega * r_layer * c_layer)) * \ np.sin(np.sqrt(0.5 * omega * r_layer * c_layer)) re12 = r_layer * np.sqrt(1 / (2 * omega * r_layer * c_layer)) * \ (np.cosh(np.sqrt(0.5 * omega * r_layer * c_layer)) * np.sin(np.sqrt(0.5 * omega * r_layer * c_layer)) + np.sinh(np.sqrt(0.5 * omega * r_layer * c_layer)) * np.cos(np.sqrt(0.5 * omega * r_layer * c_layer))) im12 = r_layer * np.sqrt(1 / (2 * omega * r_layer * c_layer)) * \ (np.cosh(np.sqrt(0.5 * omega * r_layer * c_layer)) * np.sin(np.sqrt(0.5 * omega * r_layer * c_layer)) - np.sinh(np.sqrt(0.5 * omega * r_layer * c_layer)) * np.cos(np.sqrt(0.5 * omega * r_layer * c_layer))) re21 = (-1 / r_layer) * (np.sqrt(0.5 * omega * r_layer * c_layer)) * \ (np.cosh(np.sqrt(0.5 * omega * r_layer * c_layer)) * np.sin(np.sqrt(0.5 * omega * r_layer * c_layer)) - np.sinh(np.sqrt(0.5 * omega * r_layer * c_layer)) * np.cos(np.sqrt(0.5 * omega * r_layer * c_layer))) im21 = (1 / r_layer) * (np.sqrt(0.5 * omega * r_layer * c_layer)) * \ (np.cosh(np.sqrt(0.5 * omega * r_layer * c_layer)) * np.sin(np.sqrt(0.5 * omega * r_layer * c_layer)) + np.sinh(np.sqrt(0.5 * omega * r_layer * c_layer)) * np.cos(np.sqrt(0.5 * omega * r_layer * c_layer))) re22 = re11 im22 = im11 # -----setting up the matrix for each layer a_layer = np.zeros((nr_of_layer, 4, 4)) for i, r in enumerate(re11): a_layer[i][0][0] = r a_layer[i][0][1] = im11[i] a_layer[i][0][2] = re12[i] a_layer[i][0][3] = im12[i] a_layer[i][1][0] = -im11[i] a_layer[i][1][1] = re11[i] a_layer[i][1][2] = -im12[i] a_layer[i][1][3] = re12[i] a_layer[i][2][0] = re21[i] a_layer[i][2][1] = im21[i] a_layer[i][2][2] = re22[i] a_layer[i][2][3] = im22[i] a_layer[i][3][0] = -im21[i] a_layer[i][3][1] = re21[i] a_layer[i][3][2] = -im22[i] a_layer[i][3][3] = re22[i] # -----multiplication of the matrix new_mat = np.diag(np.ones(4)) for count_layer in a_layer: new_mat = np.dot(new_mat, count_layer) # calculation of equivalent Resistance and capacities of each element self.r1 = (1 / self.area) * ((new_mat[3][3] - 1) * new_mat[0][2] + new_mat[2][3] * new_mat[0][3]) / \ ((new_mat[3][3] - 1) ** 2 + new_mat[2][3] ** 2) self.r2 = (1 / self.area) * ((new_mat[0][0] - 1) * new_mat[0][2] + new_mat[0][1] * new_mat[0][3]) / \ ((new_mat[0][0] - 1) ** 2 + new_mat[0][1] ** 2) self.c1 = self.area * ((new_mat[3][3] - 1) ** 2 + (new_mat[2][3]) ** 2) / \ (omega * (new_mat[0][2] * new_mat[2][3] - (new_mat[3][3] - 1) * new_mat[0][3])) self.c2 = self.area * ((new_mat[0][0] - 1) ** 2 + (new_mat[0][1]) ** 2) / ( omega * (new_mat[0][2] * new_mat[0][1] - (new_mat[0][0] - 1) * new_mat[0][3])) self.r3 = (1 / self.area) * (np.sum(r_layer)) - self.r1 - self.r2 r_wall = self.r1 + self.r2 + self.r3 self.c1_korr = (1 / (omega * self.r1)) * ((r_wall * self.area - new_mat[0][2] * new_mat[3][ 3] - new_mat[0][3] * new_mat[2][ 3]) / (new_mat[3][3] * new_mat[0][ 3] - new_mat[0][2] * new_mat[2][ 3])) if type(self).__name__ == "OuterWall" \ or type(self).__name__ == "Rooftop" \ or type(self).__name__ == "GroundFloor": self.c1 = self.c1_korr
[docs] def insulate_wall( self, material=None, thickness=None): """Retrofit the walls with an additional insulation layer Adds an additional layer on the wall, outer sight Parameters ---------- material : string Type of material, that is used for insulation, default = EPS035 thickness : float thickness of the insulation layer, default = None """ if material is None: material = "EPS035" else: pass ext_layer = Layer(self) new_material = Material(ext_layer) new_material.load_material_template( material, data_class=self.parent.parent.parent.data) if thickness is None: pass else: ext_layer.thickness = thickness ext_layer.material = new_material
[docs] def retrofit_wall(self, year_of_retrofit, material=None): """Retrofits wall to German refurbishment standards. This function adds an additional layer of insulation and sets the thickness of the layer according to the retrofit standard in the year of refurbishment. Refurbishment year must be newer then 1977 Note: To Calculate thickness and U-Value, the standard TEASER coefficients for outer and inner heat transfer are used. The used Standards are namely the Waermeschutzverordnung (WSVO) and Energieeinsparverordnung (EnEv) Parameters ---------- material : string Type of material, that is used for insulation year_of_retrofit : int Year of the retrofit of the wall/building """ raise NotImplementedError("Please call this method only against" "Outerwalls, Rooftops and Groundfloors")
[docs] def initialize_retrofit(self, material, year_of_retrofit): """Checks the retrofit inputs and sets material and year of retrofit if needed.""" self.set_calc_default() self.calc_ua_value() if material is None: material = "EPS_perimeter_insulation_top_layer" else: pass if year_of_retrofit < 1977: year_of_retrofit = 1977 warnings.warn("You are using a year of retrofit not supported\ by teaser. We will change your year of retrofit to 1977\ for the calculation. Be careful!") return material, year_of_retrofit
[docs] def set_insulation(self, material, calc_u, year_of_retrofit): """Sets the correct insulation thickness based on the given u-value""" if calc_u: if self.u_value <= calc_u: warnings.warn( f'No retrofit needed for {self.name} as u value ' f'is already lower than needed.') else: self.insulate_wall(material) d_ins = self.calc_ins_layer_thickness(calc_u) self.layer[-1].thickness = d_ins self.layer[-1].id = len(self.layer) else: warnings.warn( f'No fitting retrofit type found for {year_of_retrofit}')
[docs] def calc_ins_layer_thickness(self, calc_u): """Calculates the thickness of the fresh insulated layer from retrofit""" r_conduc_rem = 0 for count_layer in self.layer[:-1]: r_conduc_rem += (count_layer.thickness / count_layer.material.thermal_conduc) lambda_ins = self.layer[-1].material.thermal_conduc d_ins = lambda_ins * (1 / calc_u - self.r_outer_comb * self.area - self.r_inner_comb * self.area - r_conduc_rem) return d_ins