# created June 2015
# by TEASER4 Development Team
from teaser.logic.buildingobjects.buildingphysics.outerwall \
import OuterWall
[docs]class Rooftop(OuterWall):
"""Rooftop class
This class holds information a roof top and is a child of OuterWall()
Parameters
----------
parent : ThermalZone()
The parent class of this object, the ThermalZone the BE belongs to.
Allows for better control of hierarchical structures. If not None it
adds this Rooftop to ThermalZone.rooftops.
Default is None.
Attributes
----------
internal_id : float
Random id for the distinction between different elements.
name : str
Individual name
construction_type : str
Type of construction (e.g. "heavy" or "light"). Needed for
distinction between different constructions types in the same
building age period.
year_of_retrofit : int
Year of last retrofit
year_of_construction : int
Year of first construction
building_age_group : list
Determines the building age period that this building
element belongs to [begin, end], e.g. [1984, 1994]
area : float [m2]
Area of building element
tilt : float [degree]
Tilt against horizontal, default is 0.0
orientation : float [degree]
Azimuth direction of building element (0 : north, 90: east, 180: south,
270: west), orientation -1.0
inner_convection : float [W/(m2*K)]
Constant heat transfer coefficient of convection inner side (facing
the zone), default 1.7
inner_radiation : float [W/(m2*K)]
Constant heat transfer coefficient of radiation inner side (facing
the zone), default 5.0
outer_convection : float [W/(m2*K)]
Constant heat transfer coefficient of convection outer side (facing
the ambient or adjacent zone), default 20.0
outer_radiation : float [W/(m2*K)]
Constant heat transfer coefficient of radiation outer side (facing
the ambient or adjacent zone), default 5.0
layer : list
List of all layers of a building element (to be filled with Layer
objects). Use element.layer = None to delete all layers of the building
element
Calculated Attributes
r1 : float [K/W]
equivalent resistance R1 of the analogous model given in VDI 6007
r2 : float [K/W]
equivalent resistance R2 of the analogous model given in VDI 6007
r3 : float [K/W]
equivalent resistance R3 of the analogous model given in VDI 6007
c1 : float [J/K]
equivalent capacity C1 of the analogous model given in VDI 6007
c2 : float [J/K]
equivalent capacity C2 of the analogous model given in VDI 6007
c1_korr : float [J/K]
corrected capacity C1,korr for building elements in the case of
asymmetrical thermal load given in VDI 6007
ua_value : float [W/K]
UA-Value of building element (Area times U-Value)
r_inner_conv : float [K/W]
Convective resistance of building element on inner side (facing the
zone)
r_inner_rad : float [K/W]
Radiative resistance of building element on inner side (facing the
zone)
r_inner_conv : float [K/W]
Combined convective and radiative resistance of building element on
inner side (facing the zone)
r_outer_conv : float [K/W]
Convective resistance of building element on outer side (facing
the ambient or adjacent zone). Currently for all InnerWalls and
GroundFloors this value is set to 0.0
r_outer_rad : float [K/W]
Radiative resistance of building element on outer side (facing
the ambient or adjacent zone). Currently for all InnerWalls and
GroundFloors this value is set to 0.0
r_outer_conv : float [K/W]
Combined convective and radiative resistance of building element on
outer side (facing the ambient or adjacent zone). Currently for all
InnerWalls and GroundFloors this value is set to 0.0
wf_out : float
Weightfactor of building element ua_value/ua_value_zone
"""
def __init__(self, parent=None):
"""
"""
super(Rooftop, self).__init__(parent)
self._tilt = 0.0
self._orientation = -1.0
self._inner_convection = 1.7
self._inner_radiation = 5.0
self._outer_convection = 20.0
self._outer_radiation = 5.0