"""asd"""
from teaser.logic.buildingobjects.buildingphysics.buildingelement \
import BuildingElement
from teaser.logic.buildingobjects.buildingphysics.layer import Layer
from teaser.logic.buildingobjects.buildingphysics.material import Material
import numpy as np
import warnings
[docs]class Wall(BuildingElement):
"""Wall class
This class holds functions and information for walls. It inherits for
BuildingElement() and is a base class for all inner and outer walls.
Parameters
----------
parent : ThermalZone()
The parent class of this object, the ThermalZone the BE belongs to.
Allows for better control of hierarchical structures.
Default is None.
Attributes
----------
internal_id : float
Random id for the distinction between different elements.
name : str
Individual name
construction_type : str
Type of construction (e.g. "heavy" or "light"). Needed for
distinction between different constructions types in the same
building age period.
year_of_retrofit : int
Year of last retrofit
year_of_construction : int
Year of first construction
building_age_group : list
Determines the building age period that this building
element belongs to [begin, end], e.g. [1984, 1994]
area : float [m2]
Area of building element
tilt : float [degree]
Tilt against horizontal
orientation : float [degree]
Azimuth direction of building element (0 : north, 90: east, 180: south,
270: west)
inner_convection : float [W/(m2*K)]
Constant heat transfer coefficient of convection inner side (facing
the zone)
inner_radiation : float [W/(m2*K)]
Constant heat transfer coefficient of radiation inner side (facing
the zone)
outer_convection : float [W/(m2*K)]
Constant heat transfer coefficient of convection outer side (facing
the ambient or adjacent zone). Currently for all InnerWalls and
GroundFloors this value is set to 0.0
outer_radiation : float [W/(m2*K)]
Constant heat transfer coefficient of radiation outer side (facing
the ambient or adjacent zone). Currently for all InnerWalls and
GroundFloors this value is set to 0.0
layer : list
List of all layers of a building element (to be filled with Layer
objects). Use element.layer = None to delete all layers of the building
element
Calculated Attributes
r1 : float [K/W]
equivalent resistance R1 of the analogous model given in VDI 6007
r2 : float [K/W]
equivalent resistance R2 of the analogous model given in VDI 6007
r3 : float [K/W]
equivalent resistance R3 of the analogous model given in VDI 6007
c1 : float [J/K]
equivalent capacity C1 of the analogous model given in VDI 6007
c2 : float [J/K]
equivalent capacity C2 of the analogous model given in VDI 6007
c1_korr : float [J/K]
corrected capacity C1,korr for building elements in the case of
asymmetrical thermal load given in VDI 6007
ua_value : float [W/K]
UA-Value of building element (Area times U-Value)
r_inner_conv : float [K/W]
Convective resistance of building element on inner side (facing the
zone)
r_inner_rad : float [K/W]
Radiative resistance of building element on inner side (facing the
zone)
r_inner_conv : float [K/W]
Combined convective and radiative resistance of building element on
inner side (facing the zone)
r_outer_conv : float [K/W]
Convective resistance of building element on outer side (facing
the ambient or adjacent zone). Currently for all InnerWalls and
GroundFloors this value is set to 0.0
r_outer_rad : float [K/W]
Radiative resistance of building element on outer side (facing
the ambient or adjacent zone). Currently for all InnerWalls and
GroundFloors this value is set to 0.0
r_outer_conv : float [K/W]
Combined convective and radiative resistance of building element on
outer side (facing the ambient or adjacent zone). Currently for all
InnerWalls and GroundFloors this value is set to 0.0
wf_out : float
Weightfactor of building element ua_value/ua_value_zone
"""
def __init__(self, parent=None):
"""Constructor of Wall
"""
super(Wall, self).__init__(parent)
[docs] def calc_equivalent_res(self, t_bt=7):
"""Equivalent resistance according to VDI 6007.
Calculates the equivalent resistance and capacity of a wall according
to VDI 6007 guideline. (Analogous model).
Parameters
----------
t_bt : int
Time constant according to VDI 6007 (default t_bt = 7)
"""
nr_of_layer, density, thermal_conduc, heat_capac, thickness = \
self.gather_element_properties()
omega = 2 * np.pi / (86400 * t_bt)
r_layer = thickness / thermal_conduc
c_layer = heat_capac * density * thickness * 1000
re11 = np.cosh(np.sqrt(0.5 * omega * r_layer * c_layer)) * \
np.cos(np.sqrt(0.5 * omega * r_layer * c_layer))
im11 = np.sinh(np.sqrt(0.5 * omega * r_layer * c_layer)) * \
np.sin(np.sqrt(0.5 * omega * r_layer * c_layer))
re12 = r_layer * np.sqrt(1 / (2 * omega * r_layer * c_layer)) * \
(np.cosh(np.sqrt(0.5 * omega * r_layer * c_layer)) *
np.sin(np.sqrt(0.5 * omega * r_layer * c_layer)) +
np.sinh(np.sqrt(0.5 * omega * r_layer * c_layer)) *
np.cos(np.sqrt(0.5 * omega * r_layer * c_layer)))
im12 = r_layer * np.sqrt(1 / (2 * omega * r_layer * c_layer)) * \
(np.cosh(np.sqrt(0.5 * omega * r_layer * c_layer)) *
np.sin(np.sqrt(0.5 * omega * r_layer * c_layer)) -
np.sinh(np.sqrt(0.5 * omega * r_layer * c_layer)) *
np.cos(np.sqrt(0.5 * omega * r_layer * c_layer)))
re21 = (-1 / r_layer) * (np.sqrt(0.5 * omega * r_layer * c_layer)) * \
(np.cosh(np.sqrt(0.5 * omega * r_layer * c_layer)) *
np.sin(np.sqrt(0.5 * omega * r_layer * c_layer)) -
np.sinh(np.sqrt(0.5 * omega * r_layer * c_layer)) *
np.cos(np.sqrt(0.5 * omega * r_layer * c_layer)))
im21 = (1 / r_layer) * (np.sqrt(0.5 * omega * r_layer * c_layer)) * \
(np.cosh(np.sqrt(0.5 * omega * r_layer * c_layer)) *
np.sin(np.sqrt(0.5 * omega * r_layer * c_layer)) +
np.sinh(np.sqrt(0.5 * omega * r_layer * c_layer)) *
np.cos(np.sqrt(0.5 * omega * r_layer * c_layer)))
re22 = re11
im22 = im11
# -----setting up the matrix for each layer
a_layer = np.zeros((nr_of_layer, 4, 4))
for i, r in enumerate(re11):
a_layer[i][0][0] = r
a_layer[i][0][1] = im11[i]
a_layer[i][0][2] = re12[i]
a_layer[i][0][3] = im12[i]
a_layer[i][1][0] = -im11[i]
a_layer[i][1][1] = re11[i]
a_layer[i][1][2] = -im12[i]
a_layer[i][1][3] = re12[i]
a_layer[i][2][0] = re21[i]
a_layer[i][2][1] = im21[i]
a_layer[i][2][2] = re22[i]
a_layer[i][2][3] = im22[i]
a_layer[i][3][0] = -im21[i]
a_layer[i][3][1] = re21[i]
a_layer[i][3][2] = -im22[i]
a_layer[i][3][3] = re22[i]
# -----multiplication of the matrix
new_mat = np.diag(np.ones(4))
for count_layer in a_layer:
new_mat = np.dot(new_mat, count_layer)
# calculation of equivalent Resistance and capacities of each element
self.r1 = (1 / self.area) * ((new_mat[3][3] - 1) *
new_mat[0][2] + new_mat[2][3] *
new_mat[0][3]) / \
((new_mat[3][3] - 1) ** 2 + new_mat[2][3] ** 2)
self.r2 = (1 / self.area) * ((new_mat[0][0] - 1) *
new_mat[0][2] + new_mat[0][1] *
new_mat[0][3]) / \
((new_mat[0][0] - 1) ** 2 + new_mat[0][1] ** 2)
self.c1 = self.area * ((new_mat[3][3] - 1) ** 2 +
(new_mat[2][3]) ** 2) / \
(omega * (new_mat[0][2] * new_mat[2][3] -
(new_mat[3][3] - 1) * new_mat[0][3]))
self.c2 = self.area * ((new_mat[0][0] - 1) ** 2 +
(new_mat[0][1]) ** 2) / (
omega * (new_mat[0][2] *
new_mat[0][1] -
(new_mat[0][0] - 1) *
new_mat[0][3]))
self.r3 = (1 / self.area) * (np.sum(r_layer)) - self.r1 - self.r2
r_wall = self.r1 + self.r2 + self.r3
self.c1_korr = (1 / (omega * self.r1)) * ((r_wall * self.area -
new_mat[0][2] * new_mat[3][
3] -
new_mat[0][3] * new_mat[2][
3]) /
(new_mat[3][3] * new_mat[0][
3] -
new_mat[0][2] * new_mat[2][
3]))
if type(self).__name__ == "OuterWall" \
or type(self).__name__ == "Rooftop" \
or type(self).__name__ == "GroundFloor":
self.c1 = self.c1_korr
[docs] def insulate_wall(
self,
material=None,
thickness=None):
"""Retrofit the walls with an additional insulation layer
Adds an additional layer on the wall, outer sight
Parameters
----------
material : string
Type of material, that is used for insulation, default = EPS035
thickness : float
thickness of the insulation layer, default = None
"""
if material is None:
material = "EPS035"
else:
pass
ext_layer = Layer(self)
new_material = Material(ext_layer)
new_material.load_material_template(
material,
data_class=self.parent.parent.parent.data)
if thickness is None:
pass
else:
ext_layer.thickness = thickness
ext_layer.material = new_material
[docs] def retrofit_wall(self, year_of_retrofit, material=None):
"""Retrofits wall to German refurbishment standards.
This function adds an additional layer of insulation and sets the
thickness of the layer according to the retrofit standard in the
year of refurbishment. Refurbishment year must be newer then 1977
Note: To Calculate thickness and U-Value, the standard TEASER
coefficients for outer and inner heat transfer are used.
The used Standards are namely the Waermeschutzverordnung (WSVO) and
Energieeinsparverordnung (EnEv)
Parameters
----------
material : string
Type of material, that is used for insulation
year_of_retrofit : int
Year of the retrofit of the wall/building
"""
self.set_calc_default()
self.calc_ua_value()
if material is None:
material = "EPS_perimeter_insulation_top_layer"
else:
pass
if year_of_retrofit < 1977:
year_of_retrofit = 1977
warnings.warn("You are using a year of retrofit not supported\
by teaser. We will change your year of retrofit to 1977\
for the calculation. Be careful!")
if type(self).__name__ == 'OuterWall':
if 1977 <= year_of_retrofit <= 1981:
self.insulate_wall(material)
calc_u = 1.06 * self.area
elif 1982 <= year_of_retrofit <= 1994:
self.insulate_wall(material)
calc_u = 0.6 * self.area
elif 1995 <= year_of_retrofit <= 2001:
self.insulate_wall(material)
calc_u = 0.5 * self.area
elif 2002 <= year_of_retrofit <= 2008:
self.insulate_wall(material)
calc_u = 0.45 * self.area
elif 2009 <= year_of_retrofit <= 2013:
self.insulate_wall(material)
calc_u = 0.24 * self.area
elif year_of_retrofit >= 2014:
self.insulate_wall(material)
calc_u = 0.24 * self.area
elif type(self).__name__ == 'Rooftop':
if 1977 <= year_of_retrofit <= 1981:
self.insulate_wall(material)
calc_u = 0.45 * self.area
elif 1982 <= year_of_retrofit <= 1994:
self.insulate_wall(material)
calc_u = 0.45 * self.area
elif 1995 <= year_of_retrofit <= 2001:
self.insulate_wall(material)
calc_u = 0.3 * self.area
elif 2002 <= year_of_retrofit <= 2008:
self.insulate_wall(material)
calc_u = 0.3 * self.area
elif 2009 <= year_of_retrofit <= 2013:
self.insulate_wall(material)
calc_u = 0.2 * self.area
elif year_of_retrofit >= 2014:
self.insulate_wall(material)
calc_u = 0.2 * self.area
if type(self).__name__ == 'GroundFloor':
if 1977 <= year_of_retrofit <= 1981:
self.insulate_wall(material)
calc_u = 0.8 * self.area
elif 1982 <= year_of_retrofit <= 1994:
self.insulate_wall(material)
calc_u = 0.7 * self.area
elif 1995 <= year_of_retrofit <= 2001:
self.insulate_wall(material)
calc_u = 0.5 * self.area
elif 2002 <= year_of_retrofit <= 2008:
self.insulate_wall(material)
calc_u = 0.4 * self.area
elif 2009 <= year_of_retrofit <= 2013:
self.insulate_wall(material)
calc_u = 0.3 * self.area
elif year_of_retrofit >= 2014:
self.insulate_wall(material)
calc_u = 0.3 * self.area
r_conduc = 0
if self.ua_value < calc_u:
pass
else:
for count_layer in self.layer[:-1]:
r_conduc += (count_layer.thickness /
count_layer.material.thermal_conduc)
self.layer[-1].thickness = \
(((
1 - calc_u * self.r_inner_comb - calc_u *
self.r_outer_comb) /
calc_u) * self.area - r_conduc) * \
self.layer[-1].material.thermal_conduc
self.layer[-1].id = len(self.layer)