Core Models
physXAI.models.models
Attributes
MODEL_CLASS_REGISTRY: dict[str, Type[AbstractModel]] = dict()
module-attribute
Classes
AbstractModel
Bases: ABC
Source code in physXAI/models/models.py
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
|
Functions
generate_model(**kwargs)
abstractmethod
Abstract method to be implemented by subclasses.
Should generate and return an instance of the specific model.
kwargs
can be used to pass necessary parameters, e.g., td
(TrainingData or TrainingDataMultiStep).
Source code in physXAI/models/models.py
20 21 22 23 24 25 26 27 |
|
compile_model(model)
abstractmethod
Abstract method for model compilation. Relevant for models like Keras neural networks. For scikit-learn models, this might be a pass-through or not applicable.
Source code in physXAI/models/models.py
29 30 31 32 33 34 35 36 |
|
fit_model(model, td: TrainingDataGeneric)
abstractmethod
Abstract method to fit the model to the training data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
The model instance to be trained. |
required | |
td
|
TrainingDataGeneric
|
The TrainingData object. |
required |
Source code in physXAI/models/models.py
38 39 40 41 42 43 44 45 46 47 |
|
evaluate(model, td: TrainingDataGeneric)
abstractmethod
staticmethod
Source code in physXAI/models/models.py
49 50 51 52 |
|
plot(td: TrainingDataGeneric)
abstractmethod
Abstract method for generating and displaying plots related to model performance.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
td
|
TrainingDataGeneric
|
The TrainingData object containing true values and predictions. |
required |
Source code in physXAI/models/models.py
54 55 56 57 58 59 60 61 62 |
|
save_model(model, save_path: str)
abstractmethod
Abstract method for saving the trained model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
The trained model instance to save. |
required | |
save_path
|
str
|
The path where the model should be saved. |
required |
Source code in physXAI/models/models.py
64 65 66 67 68 69 70 71 72 73 |
|
load_model(load_path: str)
abstractmethod
Abstract method for loading a pre-trained model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
load_path
|
str
|
The path from which to load the model. |
required |
Returns:
Type | Description |
---|---|
The loaded model instance. |
Source code in physXAI/models/models.py
75 76 77 78 79 80 81 82 83 84 85 86 |
|
pipeline(td: TrainingDataGeneric, save_path: str = None, plot: bool = True, save_model: bool = True)
Defines a standard pipeline for single-step models: 1. Generate model 2. Compile model (if applicable) 3. Fit model 4. Evaluate model 5. Plot results 6. Save model (if save_path is provided)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
td
|
TrainingDataGeneric
|
The training data. |
required |
save_path
|
str
|
Path to save the trained model. Defaults to None (Saving path from Logger). |
None
|
plot
|
bool
|
Whether to plot the results. Defaults to True. |
True
|
save_model
|
bool
|
Whether to save the trained model. Defaults to True. |
True
|
Returns:
Type | Description |
---|---|
The trained model instance. |
Source code in physXAI/models/models.py
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
|
online_pipeline(td: TrainingDataGeneric, load_path: str, save_path: str = None, plot: bool = True, save_model: bool = True)
Implements an "online" training pipeline: loads a pre-existing model, further trains it on new data, evaluates, plots, and saves it back.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
td
|
TrainingDataGeneric
|
New training data. |
required |
load_path
|
str
|
Path to the pre-existing model. |
required |
save_path
|
str
|
Path to save the trained model. Defaults to None (Saving path from Logger). |
None
|
plot
|
bool
|
Whether to plot the results. Defaults to True. |
True
|
save_model
|
bool
|
Whether to save the trained model. Defaults to True. |
True
|
Returns:
Type | Description |
---|---|
The updated and saved model. |
Source code in physXAI/models/models.py
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
|
online_pipeline_internal(td: TrainingDataGeneric, model)
Implements an "online" training pipeline: trains a pre-existing model on new data
Parameters:
Name | Type | Description | Default |
---|---|---|---|
td
|
TrainingDataGeneric
|
New training data. |
required |
model
|
The model to train. |
required |
Returns:
Type | Description |
---|---|
The updated and saved model. |
Source code in physXAI/models/models.py
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
|
get_config() -> dict
Source code in physXAI/models/models.py
165 166 167 168 |
|
from_config(config: dict) -> AbstractModel
abstractmethod
classmethod
Source code in physXAI/models/models.py
170 171 172 173 |
|
model_from_config(item_conf: dict) -> AbstractModel
staticmethod
Factory function to create a model object from its configuration dictionary.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
item_conf
|
dict
|
The configuration dictionary for a model. Must contain 'class_name' and other necessary parameters. |
required |
Returns:
Name | Type | Description |
---|---|---|
AbstractModel |
AbstractModel
|
An instance of the appropriate model subclass. |
Raises:
Type | Description |
---|---|
KeyError
|
If 'class_name' is not in |
Source code in physXAI/models/models.py
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
|
SingleStepModel
Bases: AbstractModel
, ABC
Abstract Base Class for single-step prediction models. Defines a common interface and a pipeline for training, evaluating, plotting, and saving models that predict a single output based on input features.
Source code in physXAI/models/models.py
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
|
Functions
__init__(**kwargs)
Source code in physXAI/models/models.py
214 215 |
|
evaluate(model, td: TrainingDataGeneric)
staticmethod
Evaluates the trained model on training, validation (if available), and test sets. Predictions are stored in the TrainingData object, and metrics are calculated and stored.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
The trained model instance. |
required | |
td
|
TrainingDataGeneric
|
The TrainingData object containing datasets and for storing results. |
required |
Source code in physXAI/models/models.py
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
|
evaluate_multi(model, td: TrainingDataMultiStep)
staticmethod
Source code in physXAI/models/models.py
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
|
from_config(config: dict) -> SingleStepModel
classmethod
Source code in physXAI/models/models.py
331 332 333 |
|
LinearRegressionModel
Bases: SingleStepModel
A concrete implementation of SingleStepModel for scikit-learn's Linear Regression.
Source code in physXAI/models/models.py
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 |
|
Functions
generate_model(**kwargs)
Generates an instance of scikit-learn's LinearRegression model.
Source code in physXAI/models/models.py
342 343 344 345 346 |
|
fit_model(model, td: TrainingDataGeneric)
Fits the LinearRegression model using the training data from td
.
Also records the training time.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
LinearRegression
|
The scikit-learn LinearRegression model instance. |
required |
td
|
TrainingDataGeneric
|
The TrainingData object. |
required |
Source code in physXAI/models/models.py
348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
|
compile_model(model)
No compilation step is needed for scikit-learn models.
Source code in physXAI/models/models.py
363 364 365 366 367 |
|
plot(td: TrainingDataGeneric)
Generates and displays various plots related to model performance.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
td
|
TrainingDataGeneric
|
The TrainingData object |
required |
Source code in physXAI/models/models.py
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
|
save_model(model, save_path: str)
Saves the trained LinearRegression model using joblib.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
LinearRegression
|
The trained scikit-learn model. |
required |
save_path
|
str
|
The path to save the model. |
required |
Source code in physXAI/models/models.py
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 |
|
load_model(load_path: str)
Loads a scikit-learn LinearRegression model from a file using joblib.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
load_path
|
str
|
The path from which to load the model. |
required |
Returns:
Name | Type | Description |
---|---|---|
LinearRegression |
The loaded scikit-learn model. |
Source code in physXAI/models/models.py
418 419 420 421 422 423 424 425 426 427 428 429 430 431 |
|
MultiStepModel
Bases: AbstractModel
, ABC
Abstract Base Class for multi-step prediction models. Defines a common interface and pipeline for models that forecast multiple steps ahead. This class is similar to SingleStepModel but tailored for multi-step data and metrics.
Source code in physXAI/models/models.py
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 |
|
Functions
__init__(**kwargs)
Source code in physXAI/models/models.py
441 442 |
|
fit_model(model, td: TrainingDataMultiStep)
abstractmethod
Abstract method to fit the model to the training data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
The model instance to be trained. |
required | |
td
|
TrainingDataMultiStep
|
The TrainingData object. |
required |
Source code in physXAI/models/models.py
444 445 446 447 448 449 450 451 452 453 |
|
evaluate(model, td: TrainingDataMultiStep)
staticmethod
Evaluates the trained model on training, validation (if available), and test sets. Predictions are stored in the TrainingDataMultiStep object, and metrics are calculated and stored.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
The trained model instance. |
required | |
td
|
TrainingDataMultistep
|
The TrainingDataMultiStep object containing datasets and for storing results. |
required |
Source code in physXAI/models/models.py
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 |
|
plot(td: TrainingDataMultiStep)
abstractmethod
Abstract method for generating and displaying plots related to model performance.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
td
|
TrainingDataMultiStep
|
The TrainingDataMultiStep object containing true values and predictions. |
required |
Source code in physXAI/models/models.py
477 478 479 480 481 482 483 484 485 |
|
from_config(config: dict) -> MultiStepModel
classmethod
Source code in physXAI/models/models.py
487 488 489 |
|
Functions
register_model(cls)
A class decorator that registers the decorated class in the MODEL_CLASS_REGISTRY. The class is registered using its name.
Source code in physXAI/models/models.py
196 197 198 199 200 201 202 203 204 |
|